학술논문

Characterization of titanium-hydroxyapatite biocomposites processed by dip coating.
Document Type
Article
Source
Bulletin of Materials Science. Feb2016, Vol. 39 Issue 1, p263-272. 10p.
Subject
*TITANIUM composites
*CHEMICAL processes
*METAL coating
*ORTHOPEDICS
*HYDROXYAPATITE coating
*SURFACE roughness
*EQUIPMENT & supplies
Language
ISSN
0250-4707
Abstract
Ti orthopaedic implants are commonly coated with hydroxyapatite (HA) to achieve increased biocompatibility and osseointegration with natural bone. In this work the dip-coating technique was used to apply HA films on Ti foil. A gel was used as the support vehicle for commercial HA particles. The experimental parameters like surface roughness of the metallic substrate and immersion time were studied. All coated substrates were heat treated and sintered under vacuum atmosphere. The produced coatings were characterized by field-emission gun scanning electron microscopy coupled with energy-dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, microhardness, scratch test and profilometry. Additionally, the apatite-forming ability of the produced material was tested by exposure to a simulated body fluid. Higher substrate surface roughness and longer immersion time produce thicker, denser films, with higher surface roughness. Lower film porosity is accompanied by higher hardness values. However, thicker coating promotes differential shrinkage and crack formation during sintering. Both coating thickness and coating roughness increase with coating time. HA films∼30-40 μm thick with 45-50% HA theoretical density produced on Ti substrates with surface roughness of R∼1.0-1.7 μm, display an attractive combination of high hardness and resistance to spallation. Attained results are encouraging regarding the possibility of straightforward production of biocompatible and bioactive prosthetic coatings for orthopaedic applications using commercial HA. [ABSTRACT FROM AUTHOR]