학술논문

Development of a cellulose-based scaffold for sustained delivery of curcumin.
Document Type
Article
Source
International Journal of Biological Macromolecules. Jul2021, Vol. 183, p132-144. 13p.
Subject
*CURCUMIN
*ETHYLCELLULOSE
*DRUG delivery systems
*CURCUMINOIDS
*CELLULOSE
Language
ISSN
0141-8130
Abstract
Due to the unique properties of cellulose-based materials, they are attractive to be developed in industrial pharmaceutics and biomedical fields. Carboxymethyl-diethyl amino ethyl cellulose scaffold (CM-DEAEC) has been synthesized in the current work as a smart novel derivative of cellulose with a great functionality in drug delivery systems. The scaffolds were well cross-linked with 2% (v/v) epichlorohydrin (ECH), loaded with curcumin (Cur), and then were analyzed by FT-IR, XRD, SEM, and mechanical strength. While developing the ideal delivery platform, curcumin (an important chemotherapeutic agent) was chosen due to its hydrophobicity and poor bioavailability. Thus, we developed a novel scaffold for efficient loading and controlled releasing of curcumin. The swelling ratio of 136%, high curcumin entrapment efficiency (up to 83.7%), sustained in vitro drug release profile, and appropriate degradability in three weeks confirmed significant properties of the CM-DEAEC scaffold. More than 99% antibacterial activity has been observed by the cross-linked curcumin loaded CM-DEAEC scaffolds. Cytotoxicity studies using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 4′,6-diamidino-2-phenylindole (DAPI) staining showed that cross-inked curcumin loaded CM-DEAEC scaffolds did not show any toxicity using L929 cells. All experiments were compared with CMC scaffolds and better characteristics of the novel scaffold for drug delivery have been confirmed. [Display omitted] [ABSTRACT FROM AUTHOR]