학술논문

Antiangiogenic Compound Axitinib Demonstrates Low Toxicity and Antitumoral Effects against Medulloblastoma.
Document Type
Article
Source
Cancers. Jan2022, Vol. 14 Issue 1, p70. 1p.
Subject
*IN vitro studies
*DRUG approval
*NEOVASCULARIZATION inhibitors
*BLOOD-brain barrier
*ANTINEOPLASTIC agents
*GLIOMAS
*BRAIN tumors
*BENZAMIDE
*CELL lines
*DRUG toxicity
Language
ISSN
2072-6694
Abstract
Simple Summary: Medulloblastoma is the most frequent pediatric brain cancer. Despite great improvements in the treatment of this disease over the last decades, survivors are subject to debilitating adverse effects that strongly impair their quality of life. There is an urgent need to find efficient anticancer therapies with fewer toxic effects. In this study, we suggest that an FDA- and EMA-approved antiangiogenic compound named axitinib may display effective antitumoral effects and low toxicity towards children as compared to a reference treatment currently used in clinical protocols. We also show that this compound can enter the brain compartment and exert antitumoral effects in vivo. Our study paves the way towards a clinical trial of repurposing axitinib to a pediatric brain cancer indication. Background: Despite the improvement of medulloblastoma (MB) treatments, survivors face severe long-term adverse effects and associated morbidity following multimodal treatments. Moreover, relapses are fatal within a few months. Therefore, chemotherapies inducing fewer adverse effects and/or improving survival at relapse are key for MB patients. Our purpose was to evaluate the last-generation antiangiogenic drugs for their relevance in the therapeutic arsenal of MB. Methods: We screened three EMA- and FDA-approved antiangiogenic compounds (axitinib, cabozantinib and sunitinib) for their ability to reduce cell viability of five MB cell lines and their low toxicity towards two normal cell lines in vitro. Based on this screening, single-agent and combination therapies were designed for in vivo validation. Results: Axitinib, cabozantinib and sunitinib decreased viability of all the tested tumor cells. Although sunitinib was the most efficient in tumor cells, it also impacted normal cells. Therefore, axitinib showed the highest selectivity index for MB cells as compared to normal cells. The compound did not lead to acute toxicity in juvenile rats and crossed the blood–brain barrier. Moreover, axitinib efficiently reduced the growth rate of experimental brain tumors. Analysis of public databases showed that high expression of axitinib targets correlates with poor prognosis. Conclusion: Our results suggest that axitinib is a compelling candidate for MB treatment. [ABSTRACT FROM AUTHOR]