학술논문

Micro- and Nanoplastics' Effects on Protein Folding and Amyloidosis.
Document Type
Article
Source
International Journal of Molecular Sciences. Sep2022, Vol. 23 Issue 18, pN.PAG-N.PAG. 13p.
Subject
*PROTEIN folding
*AMYLOIDOSIS
*CELL physiology
*MARINE animals
Language
ISSN
1661-6596
Abstract
A significant portion of the world's plastic is not properly disposed of and, through various processes, is degraded into microscopic particles termed micro- and nanoplastics. Marine and terrestrial faunae, including humans, inevitably get in contact and may inhale and ingest these microscopic plastics which can deposit throughout the body, potentially altering cellular and molecular functions in the nervous and other systems. For instance, at the cellular level, studies in animal models have shown that plastic particles can cross the blood–brain barrier and interact with neurons, and thus affect cognition. At the molecular level, plastics may specifically influence the folding of proteins, induce the formation of aberrant amyloid proteins, and therefore potentially trigger the development of systemic and local amyloidosis. In this review, we discuss the general issue of plastic micro- and nanoparticle generation, with a focus on their effects on protein folding, misfolding, and their possible clinical implications. [ABSTRACT FROM AUTHOR]