학술논문

Phonon-mediated temperature dependence of Er3+ optical transitions in Er2O3.
Document Type
Article
Source
Communications Physics. 2/28/2024, Vol. 7 Issue 1, p1-9. 9p.
Subject
*OPTICAL materials
*ELECTRON-phonon interactions
*THIN films
*OPTICAL properties
*OPTICAL engineering
*STARK effect
Language
ISSN
2399-3650
Abstract
Characterization of the atomic level processes that determine optical transitions in emerging materials is critical to the development of new platforms for classical and quantum networking. Such understanding often emerges from studies of the temperature dependence of the transitions. We report measurements of the temperature dependent Er3+ photoluminescence in single crystal Er2O3 thin films epitaxially grown on Si(111) focused on transitions that involve the closely spaced Stark-split levels. Radiative intensities are compared to a model that includes relevant Stark-split states, single phonon-assisted excitations, and the well-established level population redistribution due to thermalization. This approach, applied to the individual Stark-split states and employing Er2O3 specific single-phonon-assisted excitations, gives good agreement with experiment. This model allows us to demonstrate the difference in the electron-phonon coupling of the 4S3/2 and 2H11/2 states of Er3+ in E2O3 and suggests that the temperature dependence of Er3+ emission intensity may vary significantly with small shifts in the wavelength (~0.1 nm) of the excitation source. Rare-earth elements are effective for engineering the optical properties of materials for a range of applications from lasers to quantum information technologies. Here, the authors investigate the temperature-dependent properties of Er3+ photoluminescence in Er2O3 thin films, focusing on the Stark-Stark transitions and how their temperature-dependent behaviour results from electron-phonon interactions. [ABSTRACT FROM AUTHOR]