학술논문

Organic carbon compounds associated with deep soil carbon stores.
Document Type
Article
Source
Plant & Soil. Jul2023, Vol. 488 Issue 1/2, p83-99. 17p. 3 Charts, 2 Graphs.
Subject
*CARBON compounds
*ORGANIC compounds
*CARBON in soils
*MOLECULES
*SOIL profiles
*CHITIN
Language
ISSN
0032-079X
Abstract
Aims: Organic carbon has been reported in deep regolithic profiles to depths of tens of metres, but the composition of the carbon compounds is unknown. Methods: Residual carbon in the form of non-volatile low molecular weight compounds (LMWC) was characterised in three deep soil profiles to a depth of 19 m under farmland in south-western Australia following extraction with ethyl acetate and analysis by GC/MS. Pyrolysis and off-line thermochemolysis were used to characterise macromolecular organic carbon (MOC) to a depth of 29 m at a fourth site. Results: Three compound classes occurred across the three different field locations: (1) terpenes, (2) fatty acids, amides and alcohols, and (3) plant steroids; indicating the influence of input of the past and present vegetation. Compounds related to fatty acids were the predominant residual carbon species in deep soils, and may be derived from plants and microorganisms. Biomarkers such as lignin, polysaccharides, proteins and terpenes at 0–0.1 m implied influences of vegetation, fire events and microorganisms. Pyrolysis found that polysaccharides were distributed mainly from 0 to 0.1 m, while aromatic compounds were consistently detected down to 29 m. Conclusions : Carbon was stabilised in the form of aromatic compounds in deep soil, whereas other carbon sources such as cellulose, chitin, and N-containing compounds were confined to the surface soil. LMWC (Z)-docos-13-enamide and bis(6-methylheptyl) phthalate, were the main components throughout the soil profiles representing 53–81% of the LMWC, and were a greater proportion of the organic matter at depths of 18–19 m. [ABSTRACT FROM AUTHOR]