학술논문

Thalamo-cortical spiking model of incremental learning combining perception, context and NREM-sleep.
Document Type
Article
Source
PLoS Computational Biology. 6/28/2021, Vol. 17 Issue 6, p1-26. 26p. 3 Charts, 5 Graphs.
Subject
*MACHINE learning
*COGNITIVE ability
*SLEEP spindles
*HOMEOSTASIS
*PYRAMIDAL neurons
*NON-REM sleep
*ACTION potentials
*SYNAPSES
Language
ISSN
1553-734X
Abstract
The brain exhibits capabilities of fast incremental learning from few noisy examples, as well as the ability to associate similar memories in autonomously-created categories and to combine contextual hints with sensory perceptions. Together with sleep, these mechanisms are thought to be key components of many high-level cognitive functions. Yet, little is known about the underlying processes and the specific roles of different brain states. In this work, we exploited the combination of context and perception in a thalamo-cortical model based on a soft winner-take-all circuit of excitatory and inhibitory spiking neurons. After calibrating this model to express awake and deep-sleep states with features comparable with biological measures, we demonstrate the model capability of fast incremental learning from few examples, its resilience when proposed with noisy perceptions and contextual signals, and an improvement in visual classification after sleep due to induced synaptic homeostasis and association of similar memories. Author summary: We created a thalamo-cortical spiking model (ThaCo) with the purpose of demonstrating a link among two phenomena that we believe to be essential for the brain capability of efficient incremental learning from few examples in noisy environments. Grounded in two experimental observations—the first about the effects of deep-sleep on pre- and post-sleep firing rate distributions, the second about the combination of perceptual and contextual information in pyramidal neurons—our model joins these two ingredients. ThaCo alternates phases of incremental learning, classification and deep-sleep. Memories of handwritten digit examples are learned through thalamo-cortical and cortico-cortical plastic synapses. In absence of noise, the combination of contextual information with perception enables fast incremental learning. Deep-sleep becomes crucial when noisy inputs are considered. We observed in ThaCo both homeostatic and associative processes: deep-sleep fights noise in perceptual and internal knowledge and it supports the categorical association of examples belonging to the same digit class, through reinforcement of class-specific cortico-cortical synapses. The distributions of pre-sleep and post-sleep firing rates during classification change in a manner similar to those of experimental observation. These changes promote energetic efficiency during recall of memories, better representation of individual memories and categories and higher classification performances. [ABSTRACT FROM AUTHOR]