학술논문

Folate ameliorates homocysteine-induced osteoblast dysfunction by reducing endoplasmic reticulum stress-activated PERK/ATF-4/CHOP pathway in MC3T3-E1 cells.
Document Type
Article
Source
Journal of Bone & Mineral Metabolism. May2022, Vol. 40 Issue 3, p422-433. 12p.
Subject
*ENDOPLASMIC reticulum
*BAX protein
*GLUCOSE-regulated proteins
*FOLIC acid
*CELL morphology
*BCL-2 genes
*OSTEOBLASTS
*B cells
Language
ISSN
0914-8779
Abstract
Introduction: Homocysteine (Hcy) is considered a newly identified risk factor for osteoporosis. Nevertheless, the underlying mechanism of folate (FA), a key factor in the metabolism of Hcy, in protection against osteoblast dysfunction remains unclear. The purpose of this study was to investigate the mechanism by which FA attenuates Hcy-induced osteoblast damage. Materials and methods: The Hcy-induced MC3T3-E1 cells were treated with different concentrations of FA. Cell morphology, cell density, cell proliferation ability, alkaline phosphatase (ALP) activity and mineralization capacity were observed and determined; the gene expression of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (BAX) and ERS-associated factors, including glucose-regulated protein 78 (GRP-78), activating transcription factor 4 (ATF-4) and growth arrest and DNA damage inducible gene 153 (CHOP/GADD153), were assessed by RT-PCR; and protein levels of GRP-78 and ATF-4 were analyzed by western blotting. Results: Hcy suppressed the proliferation, differentiation and mineralization ability of MC3T3-E1 cells in a concentration-dependent manner and activated the ERS signaling pathway. After intervention with different concentrations of FA, the cell viability and density, ALP activity, number of mineralized nodules, calcium content and Bcl-2 gene expression were all significantly increased, whereas the gene expression of GRP-78, CHOP/GADD153, ATF-4 and Bax was markedly downregulated, and protein levels of GRP-78 and ATF-4 were also markedly decreased. Conclusion: The adverse effects of Hcy on osteoblast differentiation are dose dependent. FA not only protects against osteoblasts apoptosis but also has a direct osteogenic effect on Hcy-induced osteoblasts, which could be partially mediated by inhibition of the PERK-activated ERS pathway. [ABSTRACT FROM AUTHOR]