학술논문

A 45kyr palaeoclimate record from the lowland interior of tropical South America
Document Type
Article
Source
Palaeogeography, Palaeoclimatology, Palaeoecology. Jul2011, Vol. 307 Issue 1-4, p177-192. 16p.
Subject
*HOLOCENE paleoclimatology
*LAKE sediments
*METEOROLOGICAL precipitation
*WETLANDS
*TEMPERATURE
*FOSSILS
*GLOBAL warming
*DIATOMS
*POLLEN
Language
ISSN
0031-0182
Abstract
Abstract: We present a well-dated, high-resolution, ~45kyr lake sediment record reflecting regional temperature and precipitation change in the continental interior of the Southern Hemisphere (SH) tropics of South America. The study site is Laguna La Gaiba (LLG), a large lake (95km2) hydrologically-linked to the Pantanal, an immense, seasonally-flooded basin and the world''s largest tropical wetland (135,000km2). Lake-level changes at LLG are therefore reflective of regional precipitation. We infer past fluctuations in precipitation at this site through changes in: i) pollen-inferred extent of flood-tolerant forest; ii) relative abundance of terra firme humid tropical forest versus seasonally-dry tropical forest pollen types; and iii) proportions of deep- versus shallow-water diatoms. A probabilistic model, based on plant family and genus climatic optima, was used to generate quantitative estimates of past temperature from the fossil pollen data. Our temperature reconstruction demonstrates rising temperature (by 4°C) at 19.5kyr BP, synchronous with the onset of deglacial warming in the central Andes, strengthening the evidence that climatic warming in the SH tropics preceded deglacial warming in the Northern Hemisphere (NH) by at least 5kyr. We provide unequivocal evidence that the climate at LLG was markedly drier during the last glacial period (45.0–12.2kyr BP) than during the Holocene, contrasting with SH tropical Andean and Atlantic records that demonstrate a strengthening of the South American summer monsoon during the global Last Glacial Maximum (~21kyr BP), in tune with the ~20kyr precession orbital cycle. Holocene climate conditions occurred as early as 12.8–12.2kyr BP, when increased precipitation in the Pantanal catchment caused heightened flooding and rising lake levels in LLG. In contrast to this strong geographic variation in LGM precipitation across the continent, expansion of tropical dry forest between 10 and 3kyr BP at LLG strengthens the body of evidence for widespread early–mid Holocene drought across tropical South America. [Copyright &y& Elsevier]