학술논문

Numerical Investigation on the Effects of Forest Heterogeneity on Wind-Turbine Wake.
Document Type
Article
Source
Energies (19961073). Mar2022, Vol. 15 Issue 5, p1896. 1p.
Subject
*LEAF area index
*FOREST density
*AIRBORNE lasers
*HETEROGENEITY
*LASER based sensors
Language
ISSN
1996-1073
Abstract
This work aims at investigating the effects of forest heterogeneity on a wind-turbine wake under a neutrally stratified condition. Three types of forests, homogeneous (idealized), a real forest having natural heterogeneity, and an idealized forest having a strong heterogeneity, are considered in this study. For each type, three forest densities with Leaf Area Index (LAI) values of 0.42 , 1.7 , and 4.25 are investigated. The data of the homogeneous forest are estimated from a dense forest site located in Ryningsnäs, Sweden, while the real forest data are obtained using an aerial LiDAR scan over a site located in Pihtipudas, about 140 km north of Jyväskylä, Finland. The idealized forest is made up of small forest patches to represent a strong heterogeneous forest. The turbine definition used to model the wake is the NREL 5 MW reference wind turbine, which is modeled in the numerical simulations by the Actuator Line Model (ALM) approach. The numerical simulations are implemented with OpenFOAM based on the Unsteady Reynolds Averaged Navier–Stokes (U-RANS) approach. The results highlight the effects of forest heterogeneity levels with different densities on the wake formation and recovery of a stand-alone wind-turbine wake. It is observed that the homogeneous forests have higher turbulent kinetic energy (TKE) compared to the real forests for an LAI value less than approximately 2, while forests with an LAI value above 2 show a higher TKE in the real forest than in the homogeneous and the strong heterogeneous (patched) forest. Technically, the deficits in the wake region are more pronounced in the strong heterogeneous forests than in other forest cases. [ABSTRACT FROM AUTHOR]