학술논문

Cybridization of Grapefruit with 'Dancy' Mandarin Leads to Improved Fruit Characteristics.
Document Type
Abstract
Source
Journal of the American Society for Horticultural Science. Sep2015, Vol. 140 Issue 5, p427-435. 9p.
Subject
*PLANT hybridization
*PLANT cells & tissues
*PLANT breeding
Language
ISSN
0003-1062
Abstract
In cybridization, new combinations of nuclear and cytoplasmic genes result in a unique genotype that may bring cellular, physical, physiological, and biochemical changes to the plant. This has been demonstrated in the unexpected cybrids generated from the fusion of citrus (Citrus sp.) protoplasts in two independent experiments. The first experiment was conducted to generate potentially seedless triploids by fusing diploid protoplasts of embryogenic 'Dancy' mandarin (Citrus reticulata) suspension culture cells with haploid 'Ruby Red' grapefruit (C. paradisi) protoplasts derived from tetrad-stage microspores. After multiple attempts, only one triploid was recovered, but several diploid plants with typical grapefruit morphology were also regenerated. In the second experiment, protoplasts derived from embryogenic 'Dancy' mandarin suspension culture were fused with nonembryogenic protoplasts from 'Duncan' grapefruit leaves in an effort to produce an allotetraploid somatic hybrid. The fruit from the resulting trees resembled grapefruit in morphology and type, and maintained excellent quality throughout the summer, when commercial grapefruit rapidly loses quality. Fruit on these trees remained firm with exceptional sweetness and good flavor into August, and without seed germination. The regenerants obtained in the protoplast fusion experiments were confirmed as cybrids by genetic marker analyses. The test grapefruit were identical to commercial 'Ruby Red' grapefruit at six nuclear simple sequence repeat (SSR) marker loci, but identical to 'Dancy' with respect to a mitochondrial intron marker. The plastid genomes of individual trees originated from either fusion partner. In the first experiment, haploid 'Ruby Red' protoplast preparations must have also contained contaminant diploid protoplasts. Apart from the value of altered fruit quality attributes in the marketplace, these plants provide an opportunity to understand the contributions of cytoplasmic organelle genetics to important citrus fruit-breeding objectives. [ABSTRACT FROM AUTHOR]