학술논문

Influenza A virus segments five and six can harbor artificial introns allowing expanded coding capacity.
Document Type
Article
Source
PLoS Pathogens. 9/27/2021, Vol. 17 Issue 9, p1-24. 24p.
Subject
*INFLUENZA A virus
*INFLUENZA viruses
*INTRONS
*INFLUENZA A virus, H3N2 subtype
*INFLUENZA A virus, H1N1 subtype
*RNA splicing
Language
ISSN
1553-7366
Abstract
Influenza A viruses encode their genomes across eight, negative sense RNA segments. The six largest segments produce mRNA transcripts that do not generally splice; however, the two smallest segments are actively spliced to produce the essential viral proteins NEP and M2. Thus, viral utilization of RNA splicing effectively expands the viral coding capacity without increasing the number of genomic segments. As a first step towards understanding why splicing is not more broadly utilized across genomic segments, we designed and inserted an artificial intron into the normally nonsplicing NA segment. This insertion was tolerated and, although viral mRNAs were incompletely spliced, we observed only minor effects on viral fitness. To take advantage of the unspliced viral RNAs, we encoded a reporter luciferase gene in frame with the viral ORF such that when the intron was not removed the reporter protein would be produced. This approach, which we also show can be applied to the NP encoding segment and in different viral genetic backgrounds, led to high levels of reporter protein expression with minimal effects on the kinetics of viral replication or the ability to cause disease in experimentally infected animals. These data together show that the influenza viral genome is more tolerant of splicing than previously appreciated and this knowledge can be leveraged to develop viral genetic platforms with utility for biotechnology applications. Author summary: Unlike most host mRNAs, many viral mRNAs encode multiple discrete, functional proteins. One method influenza A viruses use to increase the protein products from two of their eight RNA genome segments is splicing. Splicing requires host machinery to remove part of the viral mRNA, the intron, to generate a different mRNA product. Although only certain influenza viral segments naturally splice, we were interested in whether additional segments could splice to produce multiple proteins. We inserted artificial introns harboring reporter genes into otherwise nonsplicing genomic segments of an H1N1 influenza A virus and found that this modification was well tolerated by the virus. We further demonstrated that an unrelated H3N2 influenza A virus could similarly support splicing and express a reporter protein from an artificial intron. These findings have implications for our understanding of how viruses expand their coding capacity with a limited genome. Additionally, encoding reporter proteins in spliced intronic sequences also represents a new method of generating reporter viruses requiring limited manipulation of the viral RNA. [ABSTRACT FROM AUTHOR]