학술논문

Dielectric properties of hydrogen-incorporated chemical vapor deposited diamond thin films.
Document Type
Article
Source
Journal of Applied Physics. Oct2007, Vol. 102 Issue 7, p074115. 7p. 1 Black and White Photograph, 1 Diagram, 5 Graphs.
Subject
*DIAMOND thin films
*MICROSTRUCTURE
*NANOCRYSTALS
*HYDROGEN
*MICROWAVE plasmas
*DIELECTRIC measurements
*CHEMICAL vapor deposition
Language
ISSN
0021-8979
Abstract
Diamond thin films with a broad range of microstructures from a ultrananocrystalline diamond (UNCD) form developed at Argonne National Laboratory to a microcrystalline diamond (MCD) form have been grown with different hydrogen percentages in the Ar/CH4 gas mixture used in the microwave plasma enhanced chemical vapor deposition (CVD) process. The dielectric properties of the CVD diamond thin films have been studied using impedance and dc measurements on metal-diamond-metal test structures. Close correlations have been observed between the hydrogen content in the bulk of the diamond films, measured by elastic recoil detection (ERD), and their electrical conductivity and capacitance-frequency (C-f) behaviors. Addition of hydrogen gas in the Ar/CH4 gas mixture used to grow the diamond films appears to have two main effects depending on the film microstructure, namely, (a) in the UNCD films, hydrogen incorporates into the atomically abrupt grain boundaries satisfying sp2 carbon dangling bonds, resulting in increased resistivity, and (b) in MCD, atomic hydrogen produced in the plasma etches preferentially the graphitic phase codepositing with the diamond phase, resulting in the statistical survival and growth of large diamond grains and dominance of the diamond phase, and thus having significant impact on the dielectric properties of these films. [ABSTRACT FROM AUTHOR]