학술논문

Growth factor-heparan sulfate 'switches' regulating stages of branching morphogenesis.
Document Type
Article
Source
Pediatric Nephrology. Apr2014, Vol. 29 Issue 4, p727-735. 9p.
Subject
*BREAST
*HUMAN embryology
*GENES
*GLYCOSAMINOGLYCANS
*GROWTH factors
*KIDNEYS
*MORPHOGENESIS
*GENETIC mutation
*FETAL development
Language
ISSN
0931-041X
Abstract
The development of branched epithelial organs, such as the kidney, mammary gland, lung, pancreas, and salivary gland, is dependent upon the involvement and interaction of multiple regulatory/modulatory molecules, including soluble growth factors, extracellular matrix components, and their receptors. How the function of these molecules is coordinated to bring about the morphogenetic events that regulate iterative tip-stalk generation (ITSG) during organ development remains to be fully elucidated. A common link to many growth factor-dependent morphogenetic pathways is the involvement of variably sulfated heparan sulfates (HS), the glycosaminoglycan backbone of heparan sulfate proteoglycans (HSPG) on extracellular surfaces. Genetic deletions of HS biosynthetic enzymes (e.g., C5-epimerase, Hs2st), as well as considerable in vitro data, indicate that variably sulfated HS are essential for kidney development, particularly in Wolffian duct budding and early ureteric bud (UB) branching. A role for selective HS modifications by enzymes (e.g., Ext, Ndst, Hs2st) in stages of branching morphogenesis is also strongly supported for mammary gland ductal branching, which is dependent upon a set of growth factors similar to those involved in UB branching. Taken together, these studies provide support for the notion that the specific spatio-temporal HS binding of growth factors during the development of branched epithelial organs (such as the kidney, mammary gland, lung and salivary gland) regulates these complex processes by potentially acting as 'morphogenetic switches' during the various stages of budding, branching, and other developmental events central to epithelial organogenesis. It may be that two or more growth factor-selective HS interactions constitute a functionally equivalent morphogenetic switch; this may help to explain the paucity of severe branching phenotypes with individual growth factor knockouts. [ABSTRACT FROM AUTHOR]