학술논문

Transcriptomic and physiological changes in Eastern Mosquitofish (Gambusia holbrooki) after exposure to progestins and anti-progestagens.
Document Type
Article
Source
Aquatic Toxicology. Oct2016, Vol. 179, p8-17. 10p.
Subject
*EASTERN mosquitofish
*PROGESTATIONAL hormones
*ENDOCRINE secretions
*ESTROGEN
*ANDROGENS
*AQUATIC organisms
*PHYSIOLOGY
Language
ISSN
0166-445X
Abstract
Endocrine active compounds (EACs) remain an important group of chemicals that require additional evaluation to determine their environmental impacts. While estrogens and androgens were previously demonstrated to impact organisms during environmental exposures, progestagens have recently been shown to have strong impacts on aquatic organisms. To gain an understanding of the impacts of these types of chemicals on aquatic species, experiments evaluating the mechanisms of action of progestagen exposure were conducted with the Eastern Mosquitofish ( Gambusia holbrooki ). The objective of this study was to conduct hepatic microarray analysis of male and female G. holbrooki exposed to progestins and anti-progestagens. In addition, we evaluated the ability of levonorgestrel, a synthetic progesterone (progestin), to induce anal fin elongation and to determine how anal fin growth is modulated during co-exposures with progesterone and androgen receptor antagonists. Gene expression analyses were conducted on male and female G. holbrooki exposed for 48 h to the agonist levonorgestrel, the antagonist mifepristone, or a mixture of the two chemicals. Microarray analysis revealed that mifepristone does not act as an anti-progestagen in G. holbrooki in liver tissues, and that levonorgestrel elicits strong effects on the processes of embryo development and lipid transport. Levonorgestrel was also demonstrated to induce male secondary sexual characteristic formation in females, and co-exposure of either an androgen or levonorgestrel in the presence of the anti-androgen flutamide prevented anal fin elongation. These results provide indications as to the potential impacts of progestins, including non-target effects such as secondary sexual characteristic formation, and demonstrate the importance of this class of chemicals on aquatic organisms. [ABSTRACT FROM AUTHOR]