학술논문

Carbon Amendments Alter Microbial Community Structure and Net Mercury Methylation Potential in Sediments.
Document Type
Article
Source
Applied & Environmental Microbiology. Feb2018, Vol. 84 Issue 3, p1-14. 14p.
Subject
*MICROBIAL communities
*NEUROTOXICOLOGY
*METHYLMERCURY & the environment
*ANAEROBIC bacteria
*BIOCHEMICAL substrates
*SEDIMENTS
Language
ISSN
0099-2240
Abstract
Neurotoxic methylmercury (MeHg) is produced by anaerobic Bacteria and Archaea possessing the genes hgcAB, but it is unknown how organic substrate and electron acceptor availability impacts the distribution and abundance of these organisms. We evaluated the impact of organic substrate amendments on mercury (Hg) methylation rates, microbial community structure, and the distribution of hgcAB+ microbes with sediments. Sediment slurries were amended with shortchain fatty acids, alcohols, or a polysaccharide. Minimal increases in MeHg were observed following lactate, ethanol, and methanol amendments, while a significant decrease (~70%) was observed with cellobiose incubations. Postincubation, microbial diversity was assessed via 16S rRNA amplicon sequencing. The presence of hgcAB+ organisms was assessed with a broad-range degenerate PCR primer set for both genes, while the presence of microbes in each of the three dominant clades of methylators (Deltaproteobacteria, Firmicutes, and methanogenic Archaea) was measured with clade-specific degenerate hgcA quantitative PCR (qPCR) primer sets. The predominant microorganisms in unamended sediments consisted of Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. Clade-specific qPCR identified hgcA+ Deltaproteobacteria and Archaea in all sites but failed to detect hgcA+ Firmicutes. Cellobiose shifted the communities in all samples to ~90% non-hgcAB-containing Firmicutes (mainly Bacillus spp. and Clostridium spp.). These results suggest that either expression of hgcAB is downregulated or, more likely given the lack of 16S rRNA gene presence after cellobiose incubation, Hg-methylating organisms are largely outcompeted by cellobiose degraders or degradation products of cellobiose. These results represent a step toward understanding and exploring simple methodologies for controlling MeHg production in the environment. [ABSTRACT FROM AUTHOR]