학술논문

iASPP mediates p53 selectivity through a modular mechanism fine-tuning DNA recognition.
Document Type
Article
Source
Proceedings of the National Academy of Sciences of the United States of America. 8/27/2019, Vol. 116 Issue 35, p17470-17479. 10p.
Subject
*DNA
*DRUG design
*CRYSTAL structure
*TRANSCRIPTION factors
*CELL death
Language
ISSN
0027-8424
Abstract
The most frequently mutated protein in human cancer is p53, a transcription factor (TF) that regulates myriad genes instrumental in diverse cellular outcomes including growth arrest and cell death. Cell context-dependent p53 modulation is critical for this life-or-death balance, yet remains incompletely understood. Here we identify sequence signatures enriched in genomic p53-binding sites modulated by the transcription cofactor iASPP. Moreover, our p53-iASPP crystal structure reveals that iASPP displaces the p53 L1 loop-which mediates sequence-specific interactions with the signature-corresponding base-without perturbing other DNArecognizing modules of the p53 DNA-binding domain. A TF commonly uses multiple structural modules to recognize its cognate DNA, and thus this mechanism of a cofactor fine-tuning TF-DNA interactions through targeting a particular module is likely widespread. Previously, all tumor suppressors and oncoproteins that associate with the p53 DNA-binding domain-except the oncogenic E6 from human papillomaviruses (HPVs)-structurally cluster at the DNA-binding site of p53, complicating drug design. By contrast, iASPP inhibits p53 through a distinct surface overlapping the E6 footprint, opening prospects for p53-targeting precision medicine to improve cancer therapy. [ABSTRACT FROM AUTHOR]