학술논문

Design, Development, and First In Vivo Results of an Implantable Ventricular Assist Device, MicroVad.
Document Type
Article
Source
Artificial Organs. Oct2004, Vol. 28 Issue 10, p904-910. 7p.
Subject
*CENTRIFUGAL pumps
*TITANIUM
*POLYCARBONATES
*HEMOLYSIS & hemolysins
*CELLS
*PATHOLOGY
Language
ISSN
0160-564X
Abstract
The design concept and first in vitro and in vivo results of a long-term implantable ventricular assist device system based on a microaxial blood pump are presented. The blood-immersed parts of the pump consist of a single-stage impeller and a proximally integrated microelectric motor. Both parts are surrounded by a pump housing currently made of polycarbonate to allow visible access to the blood-exposed parts. A titanium inflow cage attached to the tip of the housing is directly implanted into the left ventricular apex. The outflow of the pump is connected to the descending aorta by means of an e-PTFE graft. The overall dimensions of the device are 12 mm in outer diameter and about 50 mm in length. The calculated lifetime of the device is up to 2 years. The system underwent long-term durability tests, hydraulic performance tests, dynamic stability tests, and in vitro hemolysis and thrombogenicity tests. Furthermore, animal tests have been performed in adult Dorset sheep. In a first series, the pump has been placed extracorporeally; in a second series, the pump was completely implanted. Mean duration of the animal experiments of the second series was 31 days (range 8–110 days,n = 14); no anticoagulation was administered over the whole test period. Blood data revealed no significant changes in blood cell counts, ionogram, or any other value. No end-organ dysfunction induced by long-term support could be observed, nor did the pathology reveal any evidence of thromboembolic complications. [ABSTRACT FROM AUTHOR]