학술논문

Fundamental scaling relationships revealed in the optical light curves of tidal disruption events.
Document Type
Article
Source
Monthly Notices of the Royal Astronomical Society. 1/15/2024, Vol. 527 Issue 2, p2452-2489. 38p.
Subject
*LIGHT curves
*BLACK holes
*OPTICAL properties
*LUMINOSITY
*ACCRETION disks
Language
ISSN
0035-8711
Abstract
We present fundamental scaling relationships between properties of the optical/UV light curves of tidal disruption events (TDEs) and the mass of the black hole that disrupted the star. We have uncovered these relations from the late-time emission of TDEs. Using a sample of 63 optically selected TDEs, the latest catalogue to date, we observed flattening of the early-time emission into a near-constant late-time plateau for at least two-thirds of our sources. Compared to other properties of the TDE light curves (e.g. peak luminosity or decay rate) the plateau luminosity shows the tightest correlation with the total mass of host galaxy (p -value of 2 × 10−6, with a residual scatter of 0.3 dex). Physically this plateau stems from the presence of an accretion flow. We demonstrate theoretically and numerically that the amplitude of this plateau emission is strongly correlated with black hole mass. By simulating a large population (N  = 106) of TDEs, we determine a plateau luminosity-black hole mass scaling relationship well described by |$\log _{10} \left({{M_{\bullet }}/M_\odot }\right) = 1.50 \log _{10} \left({ L_{\rm plat}}/10^{43} \, {\rm erg\, s^{-1}}\right) + 9.0$| (here L plat is measured at 6 × 1014 Hz in the rest frame). The observed plateau luminosities of TDEs and black hole masses in our large sample are in excellent agreement with this simulation. Using the black hole mass predicted from the observed TDE plateau luminosity, we reproduce the well-known scaling relations between black hole mass and galaxy velocity dispersion. The large black hole masses of 10 of the TDEs in our sample allow us to provide constraints on their black hole spins, favouring rapidly rotating black holes. Finally, we also discover two significant correlations between early time properties of optical TDE light curves (the g -band peak luminosity and radiated energy) and the TDEs black hole mass. [ABSTRACT FROM AUTHOR]