학술논문

Identifying Residual Structure in Intrinsically Disordered Systems: A 2D IR Spectroscopic Study of the GVGXPGVG Peptide.
Document Type
Article
Source
Journal of the American Chemical Society. 3/21/2012, Vol. 134 Issue 11, p5032-5035. 4p.
Subject
*PEPTIDE analysis
*CONFORMATIONAL analysis
*FOURIER transform infrared spectroscopy
*INFRARED spectroscopy
*MOLECULAR dynamics
Language
ISSN
0002-7863
Abstract
The peptide amide-I vibration of a proline turn encodes information on the turn structure. In this study, FTIR, two-dimensional IR spectroscopy and molecular dynamics simulations were employed to characterize the varying turn conformations that exist in the GVGXLPGVG family of disordered peptides. This analysis revealed that changing the size of the side chain at the X amino acid site from Gly to Ala to Val substantially alters the conformation of the peptide. To quantify this effect, proline peak shifts and intensity changes were compared to a structure-based spectroscopic model. These simulated spectra were used to assign the population of type-II β turns, bulged turns, and irregular β turns for each peptide. Of particular interest was the Val variant commonly found in the protein elastin, which contained a 25% population of irregular β turns containing two peptide hydrogen bonds to the proline C=O. [ABSTRACT FROM AUTHOR]