학술논문

The cold dust content of the nearby galaxies IC 5325, NGC 7496, NGC 7590, and NGC 7599.
Document Type
Article
Source
Monthly Notices of the Royal Astronomical Society. Jul2021, Vol. 504 Issue 3, p4143-4159. 17p.
Subject
*DUST
*SPECTRAL energy distribution
*RADIO telescopes
*GALAXIES
*SUBMILLIMETER astronomy
*RADIO frequency
Language
ISSN
0035-8711
Abstract
Star-forming galaxies are rich reservoirs of dust, both warm and cold. But the cold dust emission is faint alongside the relatively bright and ubiquitous warm dust emission. Recently, evidence for a very cold dust (VCD) component has also been revealed via millimetre/submillimetre (mm/sub-mm) photometry of some galaxies. This component, despite being the most massive of the three dust components in star-forming galaxies, is by virtue of its very low temperature, faint and hard to detect together with the relatively bright emission from warmer dust. Here, we analyse the dust content of a carefully selected sample of four galaxies detected by IRAS, WISE , and South Pole Telescope (SPT), whose spectral energy distributions (SEDs) were modelled to constrain their potential cold dust content. Low-frequency radio observations using the Giant Metrewave Radio Telescope (GMRT) were carried out to segregate cold dust emission from non-thermal emission in mm/sub-mm wavebands. We also carried out AstroSat /Ultraviolet Imaging Telescope (UVIT) observations for some galaxies to constrain their SED at shorter wavelengths so as to enforce energy balance for the SED modelling. We constructed their SEDs across a vast wavelength range (extending from UV to radio frequencies) by assembling global photometry from GALEX FUV + NUV, UVIT, Johnson BRI, 2MASS, WISE, IRAC, IRAS, AKARI, ISO PHOT, Planck HFI, SPT, and GMRT. The SEDs were modelled with cigale to estimate their basic properties, in particular to constrain the masses of their total and VCD components. Although the galaxies' dust masses are dominated by warmer dust, there are hints of VCD in two of the targets, NGC 7496 and NGC 7590. [ABSTRACT FROM AUTHOR]