학술논문

The Effect of Zirconia Nanoparticles on Thermal, Mechanical, and Corrosion Behavior of Nanocomposite Epoxy Coatings on Steel Substrates.
Document Type
Article
Source
Materials (1996-1944). Jul2023, Vol. 16 Issue 13, p4813. 15p.
Subject
*EPOXY coatings
*ENERGY dispersive X-ray spectroscopy
*FIELD emission electron microscopy
*ZIRCONIUM oxide
*NANOCOMPOSITE materials
*NANOPARTICLES
Language
ISSN
1996-1944
Abstract
Zirconia (ZrO2) nanoparticles (1–3 wt.%) were incorporated into the epoxy matrix using the ultra-sonication mixing method of dispersion to manufacture nanocomposite coatings. An automatic applicator was used to prepare the coating samples on a stainless steel substrate. The influence of ZrO2 nanoparticles on the physicochemical characteristics of epoxy coatings was evaluated using energy dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), thermos-gravimetric analysis (TGA), elastic modulus, and micro-hardness measurement with the nano-indentation technique. The corrosion stability during immersion in 3.5% NaCl solution was monitored using electrochemical impedance spectroscopy (EIS). All ZrO2-containing coatings showed better corrosion stability and adhesion than pure epoxy coating. Epoxy coating incorporated with 2% ZrO2 exhibited the greatest values of corrosion resistance and adhesion due to the effect of nanoparticle properties and their better de-agglomeration in the epoxy matrix than pure epoxy coating. [ABSTRACT FROM AUTHOR]