학술논문

Dipeptidyl peptidase-4 inhibitor teneligliptin accelerates recovery from cisplatin-induced acute kidney injury by attenuating inflammation and promoting tubular regeneration.
Document Type
Article
Source
Nephrology Dialysis Transplantation. Oct2019, Vol. 34 Issue 10, p1669-1680. 12p. 1 Color Photograph, 3 Black and White Photographs, 1 Chart, 3 Graphs.
Subject
*CISPLATIN
*ACUTE kidney failure
*KIDNEY injuries
*CHEMOKINE receptors
*CELL analysis
*EPITHELIAL cells
Language
ISSN
0931-0509
Abstract
Background Cisplatin is an effective chemotherapeutic agent. However, acute kidney injury (AKI) and subsequent kidney function decline limits its use. Dipeptidyl peptidase-4 (DPP-4) inhibitor has been reported to attenuate kidney injury in some in vivo models, but the mechanisms-of-action in tubule recovery upon AKI remain speculative. We hypothesized that DPP-4 inhibitor teneligliptin (TG) can facilitate kidney recovery after cisplatin-induced AKI. Methods In in vivo experiment, AKI was induced in rats by injecting 5 mg/kg of cisplatin intravenously. Oral administration of 10 mg/kg of TG, once a day, was started just before injecting cisplatin or from Day 5 after cisplatin injection. In an in vitro experiment, proliferation of isolated murine tubular cells was evaluated with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle analysis and cell counting. Cell viability was analysed by MTT assay or lactate dehydrogenase (LDH) assay. Results In in vivo experiments, we found that TG attenuates cisplatin-induced AKI and accelerates kidney recovery after the injury by promoting the proliferation of surviving epithelial cells of the proximal tubule. TG also suppressed intrarenal tumour necrosis factor-α expression, and induced macrophage polarization towards the anti-inflammatory M2 phenotype, both indirectly endorsing tubule recovery upon cisplatin injury. In in vitro experiments, TG directly accelerated the proliferation of primary tubular epithelial cells. Systematic screening of the DPP-4 substrate chemokines in vitro identified CXC chemokine ligand (CXCL)-12 as a promoted mitogenic factor. CXCL12 not only accelerated proliferation but also inhibited cell death of primary tubular epithelial cells after cisplatin exposure. CXC chemokine receptor (CXCR)-4 antagonism abolished the proliferative effect of TG. Conclusions The DPP-4 inhibitor TG can accelerate tubule regeneration and functional recovery from toxic AKI via an anti-inflammatory effect and probably via inhibition of CXCL12 breakdown. Hence, DPP-4 inhibitors may limit cisplatin-induced nephrotoxicity and improve kidney function in cancer patients. [ABSTRACT FROM AUTHOR]