학술논문

GM-CSF-activated human dendritic cells promote type 1 T follicular helper cell polarization in a CD40-dependent manner.
Document Type
Article
Source
Journal of Cell Science. Nov2022, Vol. 135 Issue 21, p1-17. 17p.
Subject
*FOLLICULAR dendritic cells
*T helper cells
*DENDRITIC cells
*LATENT tuberculosis
*MONONUCLEAR leukocytes
*BLOOD cells
Language
ISSN
0021-9533
Abstract
T follicular helper (Tfh) cells regulate humoral responses and present a marked phenotypic and functional diversity. Type 1 Tfh (Tfh1) cells were recently identified and associated with disease severity in infection and autoimmune diseases. The cellular and molecular requirements to induce human Tfh1 differentiation are not known. Here, using single-cell RNA sequencing (scRNAseq) and protein validation, we report that human blood CD1c+ dendritic cells (DCs) activated by GM-CSF (also known as CSF2) drive the differentiation of naive CD4+ T cells into Tfh1 cells. These Tfh1 cells displayed typical Tfh molecular features, including high levels of PD-1 (encoded by PDCD1), CXCR5 and ICOS. They co-expressed BCL6 and TBET (encoded by TBX21), and secreted large amounts of IL-21 and IFN-γ (encoded by IFNG). Mechanistically, GM-CSF triggered the emergence of two DC sub-populations defined by their expression of CD40 and ICOS ligand (ICOS-L), presenting distinct phenotypes, morphologies, transcriptomic signatures and functions. CD40High ICOS-LLow DCs efficiently induced Tfh1 differentiation in a CD40- dependent manner. In patients with mild COVID-19 or latent Mycobacterium tuberculosis infection, Tfh1 cells were positively correlated with a CD40High ICOS-LLow DC signature in scRNAseq of peripheral blood mononuclear cells or blood transcriptomics, respectively. Our study uncovered a novel CD40-dependent Tfh1 axis with potential physiopathological relevance to infection. [ABSTRACT FROM AUTHOR]