학술논문

Selective effects of 5-HT2C receptor modulation on performance of a novel valence-probe visual discrimination task and probabilistic reversal learning in mice.
Document Type
Article
Source
Psychopharmacology. Jul2018, Vol. 235 Issue 7, p2101-2111. 11p. 3 Graphs.
Subject
*SEROTONIN
*NEUROTRANSMITTERS
*MENTAL depression
*AFFECTIVE disorders
*TRYPTAMINE
Language
ISSN
0033-3158
Abstract
Rationale: Dysregulation of the serotonin (5-HT) system is a pathophysiological component in major depressive disorder (MDD), a condition closely associated with abnormal emotional responsivity to positive and negative feedback. However, the precise mechanism through which 5-HT tone biases feedback responsivity remains unclear. 5-HT2C receptors (5-HT2CRs) are closely linked with aspects of depressive symptomatology, including abnormalities in reinforcement processes and response to stress. Thus, we aimed to determine the impact of 5-HT2CR function on response to feedback in biased reinforcement learning.Methods: We used two touchscreen assays designed to assess the impact of positive and negative feedback on probabilistic reinforcement in mice, including a novel valence-probe visual discrimination (VPVD) and a probabilistic reversal learning procedure (PRL). Systemic administration of a 5-HT2CR agonist and antagonist resulted in selective changes in the balance of feedback sensitivity bias on these tasks.Results: Specifically, on VPVD, SB 242084, the 5-HT2CR antagonist, impaired acquisition of a discrimination dependent on appropriate integration of positive and negative feedback. On PRL, SB 242084 at 1 mg/kg resulted in changes in behaviour consistent with reduced sensitivity to positive feedback. In contrast, WAY 163909, the 5-HT2CR agonist, resulted in changes associated with increased sensitivity to positive feedback and decreased sensitivity to negative feedback.Conclusions: These results suggest that 5-HT2CRs tightly regulate feedback sensitivity bias in mice with consequent effects on learning and cognitive flexibility and specify a framework for the influence of 5-HT2CRs on sensitivity to reinforcement. [ABSTRACT FROM AUTHOR]