소장자료
LDR | 01521cam a2200289 a 4500 | ||
001 | 0093802987▲ | ||
005 | 20180520135335▲ | ||
008 | 170608s2018 njua 001 0 eng c▲ | ||
010 | ▼a2017024503▲ | ||
020 | ▼a9781118879368 (cloth)▲ | ||
035 | ▼a(KERIS)REF000018442911▲ | ||
040 | ▼aWaSeSS/DLC▼beng▼cWaSeSS▼dDLC▼d221016▲ | ||
042 | ▼apcc▲ | ||
050 | 0 | 0 | ▼aHF5548.2▼b.S55 2017▲ |
082 | 0 | 0 | ▼a006.312▼a658.4/03802856312▼223▲ |
090 | ▼a006.312▼bD232sA▲ | ||
245 | 0 | 0 | ▼aData mining for business analytics :▼bconcepts, techniques, and applications in R /▼cby Galit Shmuel...[et al.]▲ |
260 | ▼aHoboken, New Jersey :▼bJohn Wiley & Sons,▼c2018.▲ | ||
300 | ▼axxix, 544 p. :▼bill. ;▼c26 cm.▲ | ||
500 | ▼aIncludes index.▲ | ||
505 | 0 | ▼aOverview of the data mining process -- Data visualization -- Dimension reduction -- Evaluating predictive performance -- Multiple linear regression -- k-Nearest Neighbors (kNN) -- The Naive Bayes classifier -- Classification and regression trees -- Logistic regression -- Neural nets -- Discriminant analysis -- Combining methods : ensembles and uplift modeling -- Association rules and collaborative filtering -- Cluster analysis -- Handling time series -- Regression-based forecasting -- Smoothing methods -- Social network analytics -- Text mining -- Cases.▲ | |
650 | 0 | ▼aBusiness▼xData processing.▲ | |
650 | 0 | ▼aData mining.▲ | |
650 | 0 | ▼aR (Computer program language)▲ | |
650 | 0 | ▼aBusiness mathematics▼xComputer programs.▲ | |
700 | 1 | ▼aShmueli, Galit,▼d1971-▲ | |
999 | ▼a정재훈▼c김미선▲ |

Data mining for business analytics :concepts, techniques, and applications in R
자료유형
국외단행본
서명/책임사항
Data mining for business analytics : concepts, techniques, and applications in R / by Galit Shmuel...[et al.]
발행사항
Hoboken, New Jersey : John Wiley & Sons , 2018.
형태사항
xxix, 544 p. : ill. ; 26 cm.
일반주기
Includes index.
내용주기
Overview of the data mining process -- Data visualization -- Dimension reduction -- Evaluating predictive performance -- Multiple linear regression -- k-Nearest Neighbors (kNN) -- The Naive Bayes classifier -- Classification and regression trees -- Logistic regression -- Neural nets -- Discriminant analysis -- Combining methods : ensembles and uplift modeling -- Association rules and collaborative filtering -- Cluster analysis -- Handling time series -- Regression-based forecasting -- Smoothing methods -- Social network analytics -- Text mining -- Cases.
주제
ISBN
9781118879368 (cloth)
청구기호
006.312 D232sA
소장정보
예도서예약
서서가에없는책 신고
보보존서고신청
캠캠퍼스대출
우우선정리신청
배자료배달신청
문문자발송
출청구기호출력
학소장학술지 원문서비스
등록번호 | 청구기호 | 소장처 | 도서상태 | 반납예정일 | 서비스 |
---|
북토크
자유롭게 책을 읽고
느낀점을 적어주세요
글쓰기
느낀점을 적어주세요
청구기호 브라우징
관련 인기대출 도서