소장자료
LDR | 07162cam a2200373ia 4500 | ||
001 | 0091878692▲ | ||
003 | OCoLC▲ | ||
005 | 20180521033752▲ | ||
008 | 091007s2010 maua b 001 0 eng d▲ | ||
010 | ▼a2007019296▲ | ||
019 | ▼a310395444▲ | ||
020 | ▼a9781934015230 (hardcover with cd-rom : alk. paper)▲ | ||
020 | ▼a1934015237 (hardcover with cd-rom : alk. paper)▲ | ||
020 | ▼a9780763773762▲ | ||
020 | ▼a076377376X▲ | ||
040 | ▼aUHC▼cUHC▼dUHC▼dBTCTA▼dYDXCP▲ | ||
050 | 0 | 0 | ▼aQA297▼b.B88 2010▲ |
082 | 0 | 0 | ▼a518▼222▲ |
082 | 0 | 4 | ▼a515▼221▲ |
090 | ▼a515▼bB988i▲ | ||
100 | 1 | ▼aButt, Rizwan.▲ | |
245 | 1 | 0 | ▼aIntroduction to numerical analysis using MATLAB /▼cRizwan Butt.▲ |
260 | ▼aSudbury, Mass. :▼bJones and Bartlett Publishers,▼cc2010.▲ | ||
300 | ▼axv, 814 p. :▼bill. ;▼c25 cm. +▼e1 CD-ROM (4 3/4 in.)▲ | ||
490 | 0 | ▼aMathematics series.▲ | |
504 | ▼aIncludes bibliographical references (p. 801-808) and index.▲ | ||
505 | 0 | 0 | ▼g1.▼tNumber systems and errors --▼g1.1.▼tIntroduction --▼g1.2.▼tNumber representation and base of numbers --▼g1.2.1.▼tNormalized floating-point representation --▼g1.2.2.▼tRounding and chopping --▼g1.3.▼tError --▼g1.4.▼tSources of errors --▼g1.4.1.▼tHuman error --▼g1.4.2.▼tTruncation error --▼g1.4.3.▼tRound-off error --▼g1.5.▼tEffect of round-off errors in arithmetic operations --▼g1.5.1.▼tRounding-off errors in addition and subtraction --▼g1.5.2.▼tRounding-off errors in multiplication --▼g1.5.3.▼tRounding-off errors in division --▼g1.5.4.▼tRounding-off errors in powers and roots --▼g1.6.▼tSummary --▼g1.7.▼tExercises --▼g2.▼tSolutions of nonlinear equations --▼g2.1.▼tIntroduction --▼g2.2.▼tMethod of bisection --▼g2.3.▼tFalse position method --▼g2.4.▼tFixed-point method --▼g2.5.▼tNewton's method --▼g2.6.▼tSecant method --▼g2.7.▼tMultiplicity of a root --▼g2.8.▼tConvergence of iterative methods --▼g2.9.▼tAcceleration of convergence --▼g2.10.▼tSystems of nonlinear equations 85 --▼g2.10.1.▼tNewton's method --▼g2.11.▼tRoots of polynomials --▼g2.11.1.▼tHorner's method --▼g2.11.2.▼tMuller's method --▼g2.11.3.▼tBairstow's method --▼g2.12.▼tSummary --▼t2.13.▼tExercises --▲ |
505 | 0 | 0 | ▼g3.▼tSystems of linear equations --▼g3.1.▼tIntroduction --▼g3.1.1.▼tLinear system in matrix notation --▼g3.2.▼tProperties of matrices and determinants --▼g3.2.1.▼tIntroduction of matrices --▼g3.2.2.▼tSome special matrix forms --▼g3.2.3. The▼tdeterminant of matrix --▼g3.3.▼tNumerical methods for linear systems --▼g3.4.▼tDirect methods for linear systems --▼g3.4.1.▼tCramer's rule --▼g3.4.2.▼tGaussian elimination method --▼g3.4.3.▼tPivoting strategies --▼g3.4.4.▼tGauss-Jordan method --▼g3.4.5.▼tLU decomposition method --▼g3.4.6.▼tTridiagonal systems of linear equations --▼g3.5.▼tNorms of vectors and matrices --▼g3.5.1.▼tVector norms --▼g3.5.2.▼tMatrix norms --▼g3.6.▼tIterative methods for solving linear systems --▼g3.6.1.▼tJacobi iterative method --▼g3.6.2.▼tGauss-Seidel iterative method --▼g3.6.3.▼tConvergence criteria --▼g3.7.▼tEigenvalues and eigenvectors --▼g3.7.1.▼tSuccessive over-relaxation method --▼g3.7.2.▼tConjugate gradient method --▼g3.8.▼tConditioning of linear systems --▼t3.8.1.▼tErrors in solving linear systems --▼g3.8.2.▼tIterative refinement --▼g3.9.▼tSummary --▼g3.10.▼tExercises --▲ |
505 | 0 | 0 | ▼g4.▼tApproximating functions --▼g4.1.▼tIntroduction --▼g4.2.▼tPolynomial interpolation for uneven intervals --▼g4.2.1.▼tLanguage interpolating polynomials --▼g4.2.2.▼tNewton's general interpolating formula --▼g4.2.3.▼tAitken's method --▼g4.3.▼tPolynomial interpolation for even intervals --▼g4.3.1.▼tForward-differences --▼g4.3.2.▼tBackward-differences --▼g4.3.3.▼tCentral-differences --▼g4.4.▼tInterpolation with spline functions --▼g4.4.1.▼tNatural cubic spline --▼g4.4.2.▼tClamped spline --▼g4.5.▼tLeast squares approximation --▼g4.5.1.▼tLinear least squares --▼g4.5.2.▼tPolynomial least squares --▼g4.5.3.▼tNonlinear least squares --▼g4.5.4.▼tLeast squares plane --▼g4.5.5.▼tOverdetermined linear systems --▼g4.5.6.▼tLeast squares with QR decomposition --▼g4.5.7.▼tLeast squares with singular value decomposition --▼g4.6.▼tSummary --▼g4.7.▼tExercises --▼g5.▼tDifferentiation and integration --▼g5.1.▼tIntroduction --▼g5.2.▼tNumerical differentiation --▼g5.3.▼tNumerical differentiation formulas --▼g5.3.1.▼tFirst derivatives formulas --▼g5.3.2.▼tSecond derivatives formulas --▼g5.4.▼tFormulas for computing derivatives --▼g5.4.1.▼tCentral difference formulas --▼g5.4.2.▼tForward- and backward-difference formulas --▼g5.5.▼tNumerical integration --▼g5.6.▼tNewton-Cotes formulas --▼g5.6.1.▼tClosed Newton-Cotes formulas--▼g5.6.2.▼tOpen Newton-Cotes formulas --▼g5.7.▼tRepeated use of the trapezoidal rule --▼g5.8.▼tRomberg integration --▼g5.9.▼tGaussian quadratures --▼g5.10.▼tSummary --▼g5.11.▼tExercises --▲ |
505 | 0 | 0 | ▼g6.▼tOrdinary differential equations --▼g6.1.▼tIntroduction --▼g6.1.1.▼tClassification of differential equations --▼g6.2.▼tNumerical methods for solving IVP --▼g6.3.▼tSingle-step methods for IVP --▼g6.3.1.▼tEuler's method --▼g6.3.2.▼tAnalysis of Euler's methods --▼g6.3.3.▼tHigher-order Taylor methods --▼g6.3.4.▼tRunge-Kutta methods --▼g6.3.5.▼tThird-order Ringa-Kutta method --▼g6.3.6.▼tFourth-order Runge-Kutta method --▼g6.3.7.▼tFifth-order Runge-Kutta method --▼g6.3.8.▼tRunge-Kutta-Merson method --▼g6.3.9.▼tRunge-Kutta-Lawson's fifth-order method --▼g6.3.10.▼tRunge-Kutta-Butcher sixth-order method --▼g6.3.11.▼tRunge-Kutta-Fehlberg method --▼g6.4.▼tMulti-step methods for IVP --▼g6.5.▼tPredictor-corrector methods --▼g6.5.1.▼tMilne-Simpson method --▼g6.5.2.▼tAdams-Bashforth-Moulton method --▼g6.6.▼tSystems of simultaneous ODE --▼g6.7.▼tHigher-order differential equations --▼g6.8.▼tBoundary-value problems --▼g6.8.1. The▼tshooting method --▼g6.8.2. The▼tnonlinear shooting method --▼g6.8.3. The▼tfinite difference method --▼g6.9.▼tSummary --▼g6.10.▼tExercises --▲ |
505 | 0 | 0 | ▼g7.▼tEigenvalues and eigenvectors --▼g7.1.▼tIntroduction --▼g7.2.▼tLinear algebra and eigenvalues problems --▼g7.3.▼tDiagonalization of matrices --▼g7.4.▼tBasic properties of eigenvalue properties --▼g7.5.▼tSome important results of eigenvalue problems --▼g7.6.▼tNumerical methods for eigenvalue problems --▼g7.7.▼tVector iterative methods for eigenvalues --▼g7.7.1.▼tPower method --▼g7.7.2.▼tInverse power method --▼g7.7.3.▼tShifted inverse power method --▼g7.8.▼tLocation of eigenvalues --▼g7.8.1.▼tGerschgorin circles theorem --▼g7.8.2.▼tRayleigh quotient --▼g7.9.▼tIntermediate eigenvalues --▼g7.10.▼tEigenvalues of symmetric matrices --▼g7.10.1.▼tJacobi method --▼g7.10.2.▼tSturm sequence iteration --▼g7.10.3.▼tGiven's method --▼g7.10.4.▼tHouseholder's method --▼g7.11.▼tMatrix decomposition methods --▼g7.11.1.▼tQR method --▼g7.11.2.▼tLR method --▼g7.11.3.▼tUpper Hessenberg form --▼g7.11.4.▼tSingular value decomposition --▼g7.12.▼tSummary --▼g7.13.▼tExercises --▼tAppendices --▼gA.▼tSome mathematical preliminaries --▼gB.▼tIntroduction to MATLAB --▼gC.▼tIndex of MATLAB programs --▼gD.▼tSymbolic computation --▼gE.▼tAnswers to selected exercises --▼gF.▼tAbout the CD-ROM --▼tBibliography --▼tIndex.▲ |
630 | 0 | ▼aMATLAB.▲ | |
650 | 0 | ▼aNumerical analysis▼xData processing.▲ | |
999 | ▼c정영주▲ |

Introduction to numerical analysis using MATLAB
자료유형
국외단행본
서명/책임사항
Introduction to numerical analysis using MATLAB / Rizwan Butt.
개인저자
발행사항
Sudbury, Mass. : Jones and Bartlett Publishers , c2010.
형태사항
xv, 814 p. : ill. ; 25 cm. + 1 CD-ROM (4 3/4 in.)
서지주기
Includes bibliographical references (p. 801-808) and index.
내용주기
1. Number systems and errors -- 1.1. Introduction -- 1.2. Number representation and base of numbers -- 1.2.1. Normalized floating-point representation -- 1.2.2. Rounding and chopping -- 1.3. Error -- 1.4. Sources of errors -- 1.4.1. Human error -- 1.4.2. Truncation error -- 1.4.3. Round-off error -- 1.5. Effect of round-off errors in arithmetic operations -- 1.5.1. Rounding-off errors in addition and subtraction -- 1.5.2. Rounding-off errors in multiplication -- 1.5.3. Rounding-off errors in division -- 1.5.4. Rounding-off errors in powers and roots -- 1.6. Summary -- 1.7. Exercises -- 2. Solutions of nonlinear equations -- 2.1. Introduction -- 2.2. Method of bisection -- 2.3. False position method -- 2.4. Fixed-point method -- 2.5. Newton's method -- 2.6. Secant method -- 2.7. Multiplicity of a root -- 2.8. Convergence of iterative methods -- 2.9. Acceleration of convergence -- 2.10. Systems of nonlinear equations 85 -- 2.10.1. Newton's method -- 2.11. Roots of polynomials -- 2.11.1. Horner's method -- 2.11.2. Muller's method -- 2.11.3. Bairstow's method -- 2.12. Summary -- 2.13. Exercises --
3. Systems of linear equations -- 3.1. Introduction -- 3.1.1. Linear system in matrix notation -- 3.2. Properties of matrices and determinants -- 3.2.1. Introduction of matrices -- 3.2.2. Some special matrix forms -- 3.2.3. The determinant of matrix -- 3.3. Numerical methods for linear systems -- 3.4. Direct methods for linear systems -- 3.4.1. Cramer's rule -- 3.4.2. Gaussian elimination method -- 3.4.3. Pivoting strategies -- 3.4.4. Gauss-Jordan method -- 3.4.5. LU decomposition method -- 3.4.6. Tridiagonal systems of linear equations -- 3.5. Norms of vectors and matrices -- 3.5.1. Vector norms -- 3.5.2. Matrix norms -- 3.6. Iterative methods for solving linear systems -- 3.6.1. Jacobi iterative method -- 3.6.2. Gauss-Seidel iterative method -- 3.6.3. Convergence criteria -- 3.7. Eigenvalues and eigenvectors -- 3.7.1. Successive over-relaxation method -- 3.7.2. Conjugate gradient method -- 3.8. Conditioning of linear systems -- 3.8.1. Errors in solving linear systems -- 3.8.2. Iterative refinement -- 3.9. Summary -- 3.10. Exercises --
4. Approximating functions -- 4.1. Introduction -- 4.2. Polynomial interpolation for uneven intervals -- 4.2.1. Language interpolating polynomials -- 4.2.2. Newton's general interpolating formula -- 4.2.3. Aitken's method -- 4.3. Polynomial interpolation for even intervals -- 4.3.1. Forward-differences -- 4.3.2. Backward-differences -- 4.3.3. Central-differences -- 4.4. Interpolation with spline functions -- 4.4.1. Natural cubic spline -- 4.4.2. Clamped spline -- 4.5. Least squares approximation -- 4.5.1. Linear least squares -- 4.5.2. Polynomial least squares -- 4.5.3. Nonlinear least squares -- 4.5.4. Least squares plane -- 4.5.5. Overdetermined linear systems -- 4.5.6. Least squares with QR decomposition -- 4.5.7. Least squares with singular value decomposition -- 4.6. Summary -- 4.7. Exercises -- 5. Differentiation and integration -- 5.1. Introduction -- 5.2. Numerical differentiation -- 5.3. Numerical differentiation formulas -- 5.3.1. First derivatives formulas -- 5.3.2. Second derivatives formulas -- 5.4. Formulas for computing derivatives -- 5.4.1. Central difference formulas -- 5.4.2. Forward- and backward-difference formulas -- 5.5. Numerical integration -- 5.6. Newton-Cotes formulas -- 5.6.1. Closed Newton-Cotes formulas-- 5.6.2. Open Newton-Cotes formulas -- 5.7. Repeated use of the trapezoidal rule -- 5.8. Romberg integration -- 5.9. Gaussian quadratures -- 5.10. Summary -- 5.11. Exercises --
6. Ordinary differential equations -- 6.1. Introduction -- 6.1.1. Classification of differential equations -- 6.2. Numerical methods for solving IVP -- 6.3. Single-step methods for IVP -- 6.3.1. Euler's method -- 6.3.2. Analysis of Euler's methods -- 6.3.3. Higher-order Taylor methods -- 6.3.4. Runge-Kutta methods -- 6.3.5. Third-order Ringa-Kutta method -- 6.3.6. Fourth-order Runge-Kutta method -- 6.3.7. Fifth-order Runge-Kutta method -- 6.3.8. Runge-Kutta-Merson method -- 6.3.9. Runge-Kutta-Lawson's fifth-order method -- 6.3.10. Runge-Kutta-Butcher sixth-order method -- 6.3.11. Runge-Kutta-Fehlberg method -- 6.4. Multi-step methods for IVP -- 6.5. Predictor-corrector methods -- 6.5.1. Milne-Simpson method -- 6.5.2. Adams-Bashforth-Moulton method -- 6.6. Systems of simultaneous ODE -- 6.7. Higher-order differential equations -- 6.8. Boundary-value problems -- 6.8.1. The shooting method -- 6.8.2. The nonlinear shooting method -- 6.8.3. The finite difference method -- 6.9. Summary -- 6.10. Exercises --
7. Eigenvalues and eigenvectors -- 7.1. Introduction -- 7.2. Linear algebra and eigenvalues problems -- 7.3. Diagonalization of matrices -- 7.4. Basic properties of eigenvalue properties -- 7.5. Some important results of eigenvalue problems -- 7.6. Numerical methods for eigenvalue problems -- 7.7. Vector iterative methods for eigenvalues -- 7.7.1. Power method -- 7.7.2. Inverse power method -- 7.7.3. Shifted inverse power method -- 7.8. Location of eigenvalues -- 7.8.1. Gerschgorin circles theorem -- 7.8.2. Rayleigh quotient -- 7.9. Intermediate eigenvalues -- 7.10. Eigenvalues of symmetric matrices -- 7.10.1. Jacobi method -- 7.10.2. Sturm sequence iteration -- 7.10.3. Given's method -- 7.10.4. Householder's method -- 7.11. Matrix decomposition methods -- 7.11.1. QR method -- 7.11.2. LR method -- 7.11.3. Upper Hessenberg form -- 7.11.4. Singular value decomposition -- 7.12. Summary -- 7.13. Exercises -- Appendices -- A. Some mathematical preliminaries -- B. Introduction to MATLAB -- C. Index of MATLAB programs -- D. Symbolic computation -- E. Answers to selected exercises -- F. About the CD-ROM -- Bibliography -- Index.
3. Systems of linear equations -- 3.1. Introduction -- 3.1.1. Linear system in matrix notation -- 3.2. Properties of matrices and determinants -- 3.2.1. Introduction of matrices -- 3.2.2. Some special matrix forms -- 3.2.3. The determinant of matrix -- 3.3. Numerical methods for linear systems -- 3.4. Direct methods for linear systems -- 3.4.1. Cramer's rule -- 3.4.2. Gaussian elimination method -- 3.4.3. Pivoting strategies -- 3.4.4. Gauss-Jordan method -- 3.4.5. LU decomposition method -- 3.4.6. Tridiagonal systems of linear equations -- 3.5. Norms of vectors and matrices -- 3.5.1. Vector norms -- 3.5.2. Matrix norms -- 3.6. Iterative methods for solving linear systems -- 3.6.1. Jacobi iterative method -- 3.6.2. Gauss-Seidel iterative method -- 3.6.3. Convergence criteria -- 3.7. Eigenvalues and eigenvectors -- 3.7.1. Successive over-relaxation method -- 3.7.2. Conjugate gradient method -- 3.8. Conditioning of linear systems -- 3.8.1. Errors in solving linear systems -- 3.8.2. Iterative refinement -- 3.9. Summary -- 3.10. Exercises --
4. Approximating functions -- 4.1. Introduction -- 4.2. Polynomial interpolation for uneven intervals -- 4.2.1. Language interpolating polynomials -- 4.2.2. Newton's general interpolating formula -- 4.2.3. Aitken's method -- 4.3. Polynomial interpolation for even intervals -- 4.3.1. Forward-differences -- 4.3.2. Backward-differences -- 4.3.3. Central-differences -- 4.4. Interpolation with spline functions -- 4.4.1. Natural cubic spline -- 4.4.2. Clamped spline -- 4.5. Least squares approximation -- 4.5.1. Linear least squares -- 4.5.2. Polynomial least squares -- 4.5.3. Nonlinear least squares -- 4.5.4. Least squares plane -- 4.5.5. Overdetermined linear systems -- 4.5.6. Least squares with QR decomposition -- 4.5.7. Least squares with singular value decomposition -- 4.6. Summary -- 4.7. Exercises -- 5. Differentiation and integration -- 5.1. Introduction -- 5.2. Numerical differentiation -- 5.3. Numerical differentiation formulas -- 5.3.1. First derivatives formulas -- 5.3.2. Second derivatives formulas -- 5.4. Formulas for computing derivatives -- 5.4.1. Central difference formulas -- 5.4.2. Forward- and backward-difference formulas -- 5.5. Numerical integration -- 5.6. Newton-Cotes formulas -- 5.6.1. Closed Newton-Cotes formulas-- 5.6.2. Open Newton-Cotes formulas -- 5.7. Repeated use of the trapezoidal rule -- 5.8. Romberg integration -- 5.9. Gaussian quadratures -- 5.10. Summary -- 5.11. Exercises --
6. Ordinary differential equations -- 6.1. Introduction -- 6.1.1. Classification of differential equations -- 6.2. Numerical methods for solving IVP -- 6.3. Single-step methods for IVP -- 6.3.1. Euler's method -- 6.3.2. Analysis of Euler's methods -- 6.3.3. Higher-order Taylor methods -- 6.3.4. Runge-Kutta methods -- 6.3.5. Third-order Ringa-Kutta method -- 6.3.6. Fourth-order Runge-Kutta method -- 6.3.7. Fifth-order Runge-Kutta method -- 6.3.8. Runge-Kutta-Merson method -- 6.3.9. Runge-Kutta-Lawson's fifth-order method -- 6.3.10. Runge-Kutta-Butcher sixth-order method -- 6.3.11. Runge-Kutta-Fehlberg method -- 6.4. Multi-step methods for IVP -- 6.5. Predictor-corrector methods -- 6.5.1. Milne-Simpson method -- 6.5.2. Adams-Bashforth-Moulton method -- 6.6. Systems of simultaneous ODE -- 6.7. Higher-order differential equations -- 6.8. Boundary-value problems -- 6.8.1. The shooting method -- 6.8.2. The nonlinear shooting method -- 6.8.3. The finite difference method -- 6.9. Summary -- 6.10. Exercises --
7. Eigenvalues and eigenvectors -- 7.1. Introduction -- 7.2. Linear algebra and eigenvalues problems -- 7.3. Diagonalization of matrices -- 7.4. Basic properties of eigenvalue properties -- 7.5. Some important results of eigenvalue problems -- 7.6. Numerical methods for eigenvalue problems -- 7.7. Vector iterative methods for eigenvalues -- 7.7.1. Power method -- 7.7.2. Inverse power method -- 7.7.3. Shifted inverse power method -- 7.8. Location of eigenvalues -- 7.8.1. Gerschgorin circles theorem -- 7.8.2. Rayleigh quotient -- 7.9. Intermediate eigenvalues -- 7.10. Eigenvalues of symmetric matrices -- 7.10.1. Jacobi method -- 7.10.2. Sturm sequence iteration -- 7.10.3. Given's method -- 7.10.4. Householder's method -- 7.11. Matrix decomposition methods -- 7.11.1. QR method -- 7.11.2. LR method -- 7.11.3. Upper Hessenberg form -- 7.11.4. Singular value decomposition -- 7.12. Summary -- 7.13. Exercises -- Appendices -- A. Some mathematical preliminaries -- B. Introduction to MATLAB -- C. Index of MATLAB programs -- D. Symbolic computation -- E. Answers to selected exercises -- F. About the CD-ROM -- Bibliography -- Index.
ISBN
9781934015230 (hardcover with cd-rom : alk. paper) 1934015237 (hardcover with cd-rom : alk. paper) 9780763773762 076377376X
청구기호
515 B988i
소장정보
예도서예약
서서가에없는책 신고
보보존서고신청
캠캠퍼스대출
우우선정리신청
배자료배달신청
문문자발송
출청구기호출력
학소장학술지 원문서비스
등록번호 | 청구기호 | 소장처 | 도서상태 | 반납예정일 | 서비스 |
---|
북토크
자유롭게 책을 읽고
느낀점을 적어주세요
글쓰기
느낀점을 적어주세요
청구기호 브라우징
관련 인기대출 도서