소장자료
LDR | 12129nam a22005413i 4500 | ||
001 | 0100499891▲ | ||
003 | MiAaPQ▲ | ||
005 | 20210114132328▲ | ||
006 | m o d | ▲ | ||
007 | cr cnu||||||||▲ | ||
008 | 190222s2017 xx o ||||0 eng d▲ | ||
020 | ▼a9781292217680▼q(electronic bk.)▲ | ||
020 | ▼z9781292217659▲ | ||
035 | ▼a(MiAaPQ)EBC5186292▲ | ||
035 | ▼a(Au-PeEL)EBL5186292▲ | ||
035 | ▼a(CaPaEBR)ebr11482363▲ | ||
035 | ▼a(OCoLC)1017002041▲ | ||
040 | ▼aMiAaPQ▼beng▼erda▼epn▼cMiAaPQ▼dMiAaPQ▲ | ||
050 | 4 | ▼aT56 .Q368 2018▲ | |
082 | 0 | ▼a658.403▲ | |
100 | 1 | ▼aRender, Barry.▲ | |
245 | 1 | 0 | ▼aQuantitative Analysis for Management, Global Edition.▲ |
250 | ▼a13th ed.▲ | ||
264 | 1 | ▼aHarlow, United Kingdom :▼bPearson Education Limited,▼c2017.▲ | |
264 | 4 | ▼c짤2018.▲ | |
300 | ▼a1 online resource (610 pages)▲ | ||
336 | ▼atext▼btxt▼2rdacontent▲ | ||
337 | ▼acomputer▼bc▼2rdamedia▲ | ||
338 | ▼aonline resource▼bcr▼2rdacarrier▲ | ||
505 | 0 | ▼aCover -- Title Page -- Copyright Page -- About the Authors -- Brief Contents -- Contents -- Preface -- Acknowledgments -- Chapter 1: Introduction to Quantitative Analysis -- 1.1. What Is Quantitative Analysis? -- 1.2. Business Analytics -- 1.3. The Quantitative Analysis Approach -- Defining the Problem -- Developing a Model -- Acquiring Input Data -- Developing a Solution -- Testing the Solution -- Analyzing the Results and Sensitivity Analysis -- Implementing the Results -- The Quantitative Analysis Approach and Modeling in the Real World -- 1.4. How to Develop a Quantitative Analysis Model -- The Advantages of Mathematical Modeling -- Mathematical Models Categorized by Risk -- 1.5. The Role of Computers and Spreadsheet Models in the Quantitative Analysis Approach -- 1.6. Possible Problems in the Quantitative Analysis Approach -- Defining the Problem -- Developing a Model -- Acquiring Input Data -- Developing a Solution -- Testing the Solution -- Analyzing the Results -- 1.7. Implementation-Not Just the Final Step -- Lack of Commitment and Resistance to Change -- Lack of Commitment by Quantitative Analysts -- Summary -- Glossary -- Key Equations -- Self-Test -- Discussion Questions and Problems -- Case Study: Food and Beverages at Southwestern University Football Games -- Bibliography -- Chapter 2: Probability Concepts and Applications -- 2.1. Fundamental Concepts -- Two Basic Rules of Probability -- Types of Probability -- Mutually Exclusive and Collectively Exhaustive Events -- Unions and Intersections of Events -- Probability Rules for Unions, Intersections, and Conditional Probabilities -- 2.2. Revising Probabilities with Bayes' Theorem -- General Form of Bayes' Theorem -- 2.3. Further Probability Revisions -- 2.4. Random Variables -- 2.5. Probability Distributions -- Probability Distribution of a Discrete Random Variable.▲ | |
505 | 8 | ▼aExpected Value of a Discrete Probability Distribution -- Variance of a Discrete Probability Distribution -- Probability Distribution of a Continuous Random Variable -- 2.6. The Binomial Distribution -- Solving Problems with the Binomial Formula -- Solving Problems with Binomial Tables -- 2.7. The Normal Distribution -- Area Under the Normal Curve -- Using the Standard Normal Table -- Haynes Construction Company Example -- The Empirical Rule -- 2.8. The F Distribution -- 2.9. The Exponential Distribution -- Arnold's Muffler Example -- 2.10. The Poisson Distribution -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: WTVX -- Bibliography -- Appendix 2.1: Derivation of Bayes' Theorem -- Chapter 3: Decision Analysis -- 3.1. The Six Steps in Decision Making -- 3.2. Types of Decision-Making Environments -- 3.3. Decision Making Under Uncertainty -- Optimistic -- Pessimistic -- Criterion of Realism (Hurwicz Criterion) -- Equally Likely (Laplace) -- Minimax Regret -- 3.4. Decision Making Under Risk -- Expected Monetary Value -- Expected Value of Perfect Information -- Expected Opportunity Loss -- Sensitivity Analysis -- A Minimization Example -- 3.5. Using Software for Payoff Table Problems -- QM for Windows -- Excel QM -- 3.6. Decision Trees -- Efficiency of Sample Information -- Sensitivity Analysis -- 3.7. How Probability Values Are Estimated by Bayesian Analysis -- Calculating Revised Probabilities -- Potential Problem in Using Survey Results -- 3.8. Utility Theory -- Measuring Utility and Constructing a Utility Curve -- Utility as a Decision-Making Criterion -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Starting Right Corporation -- Case Study: Toledo Leather Company -- Case Study: Blake Electronics.▲ | |
505 | 8 | ▼aBibliography -- Chapter 4: Regression Models -- 4.1. Scatter Diagrams -- 4.2. Simple Linear Regression -- 4.3. Measuring the Fit of the Regression Model -- Coefficient of Determination -- Correlation Coefficient -- 4.4. Assumptions of the Regression Model -- Estimating the Variance -- 4.5. Testing the Model for Significance -- Triple A Construction Example -- The Analysis of Variance (ANOVA) Table -- Triple A Construction ANOVA Example -- 4.6. Using Computer Software for Regression -- Excel 2016 -- Excel QM -- QM for Windows -- 4.7. Multiple Regression Analysis -- Evaluating the Multiple Regression Model -- Jenny Wilson Realty Example -- 4.8. Binary or Dummy Variables -- 4.9. Model Building -- Stepwise Regression -- Multicollinearity -- 4.10. Nonlinear Regression -- 4.11. Cautions and Pitfalls in Regression Analysis -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: North-South Airline -- Bibliography -- Appendix 4.1: Formulas for Regression Calculations -- Chapter 5: Forecasting -- 5.1. Types of Forecasting Models -- Qualitative Models -- Causal Models -- Time-Series Models -- 5.2. Components of a Time-Series -- 5.3. Measures of Forecast Accuracy -- 5.4. Forecasting Models-Random Variations Only -- Moving Averages -- Weighted Moving Averages -- Exponential Smoothing -- Using Software for Forecasting Time Series -- 5.5. Forecasting Models-Trend and Random Variations -- Exponential Smoothing with Trend -- Trend Projections -- 5.6. Adjusting for Seasonal Variations -- Seasonal Indices -- Calculating Seasonal Indices with No Trend -- Calculating Seasonal Indices with Trend -- 5.7. Forecasting Models-Trend, Seasonal, and Random Variations -- The Decomposition Method -- Software for Decomposition -- Using Regression with Trend and Seasonal Components.▲ | |
505 | 8 | ▼a5.8. Monitoring and Controlling Forecasts -- Adaptive Smoothing -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Forecasting Attendance at SWU Football Games -- Case Study: Forecasting Monthly Sales -- Bibliography -- Chapter 6: Inventory Control Models -- 6.1. Importance of Inventory Control -- Decoupling Function -- Storing Resources -- Irregular Supply and Demand -- Quantity Discounts -- Avoiding Stockouts and Shortages -- 6.2. Inventory Decisions -- 6.3. Economic Order Quantity: Determining How Much to Order -- Inventory Costs in the EOQ Situation -- Finding the EOQ -- Sumco Pump Company Example -- Purchase Cost of Inventory Items -- Sensitivity Analysis with the EOQ Model -- 6.4. Reorder Point: Determining When to Order -- 6.5. EOQ Without the Instantaneous Receipt Assumption -- Annual Carrying Cost for Production Run Model -- Annual Setup Cost or Annual Ordering Cost -- Determining the Optimal Production Quantity -- Brown Manufacturing Example -- 6.6. Quantity Discount Models -- Brass Department Store Example -- 6.7. Use of Safety Stock -- 6.8. Single-Period Inventory Models -- Marginal Analysis with Discrete Distributions -- Caf챕 du Donut Example -- Marginal Analysis with the Normal Distribution -- Newspaper Example -- 6.9. ABC Analysis -- 6.10. Dependent Demand: The Case for Material Requirements Planning -- Material Structure Tree -- Gross and Net Material Requirements Plans -- Two or More End Products -- 6.11. Just-In-Time Inventory Control -- 6.12. Enterprise Resource Planning -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Martin-Pullin Bicycle Corporation -- Bibliography -- Appendix 6.1: Inventory Control with QM for Windows.▲ | |
505 | 8 | ▼aChapter 7: Linear Programming Models: Graphical and Computer Methods -- 7.1. Requirements of a Linear Programming Problem -- 7.2. Formulating LP Problems -- Flair Furniture Company -- 7.3. Graphical Solution to an LP Problem -- Graphical Representation of Constraints -- Isoprofit Line Solution Method -- Corner Point Solution Method -- Slack and Surplus -- 7.4. Solving Flair Furniture's LP Problem Using QM for Windows, Excel 2016, and Excel QM -- Using QM for Windows -- Using Excel's Solver Command to Solve LP Problems -- Using Excel QM -- 7.5. Solving Minimization Problems -- Holiday Meal Turkey Ranch -- 7.6. Four Special Cases in LP -- No Feasible Solution -- Unboundedness -- Redundancy -- Alternate Optimal Solutions -- 7.7. Sensitivity Analysis -- High Note Sound Company -- Changes in the Objective Function Coefficient -- QM for Windows and Changes in Objective Function Coefficients -- Excel Solver and Changes in Objective Function Coefficients -- Changes in the Technological Coefficients -- Changes in the Resources or Right-Hand-Side Values -- QM for Windows and Changes in Right-Hand- Side Values -- Excel Solver and Changes in Right-Hand-Side Values -- Summary -- Glossary -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Mexicana Wire Winding, Inc. -- Bibliography -- Chapter 8: Linear Programming Applications -- 8.1. Marketing Applications -- Media Selection -- Marketing Research -- 8.2. Manufacturing Applications -- Production Mix -- Production Scheduling -- 8.3. Employee Scheduling Applications -- Labor Planning -- 8.4. Financial Applications -- Portfolio Selection -- Truck Loading Problem -- 8.5. Ingredient Blending Applications -- Diet Problems -- Ingredient Mix and Blending Problems -- 8.6. Other Linear Programming Applications -- Summary -- Self-Test -- Problems -- Case Study: Cable & Moore -- Bibliography.▲ | |
505 | 8 | ▼aChapter 9: Transportation, Assignment, and Network Models.▲ | |
520 | ▼aFor courses in management science and decision modeling. � Foundational understanding of management science through real-world problems and solutions Quantitative Analysis for Management helps students to develop a real-world understanding of business analytics, quantitative methods, and management science by emphasizing model building, tangible examples, and computer applications. The authors offer an accessible introduction to mathematical models and then students apply those models using step-by-step, how-to instructions. For more intricate mathematical procedures, the 13th Edition offers a flexible approach, allowing instructors to omit specific sections without interrupting the flow of the material. Supporting computer software enables instructors to focus on the managerial problems and solutions, rather than spending valuable class time on the details of algorithms.▲ | ||
588 | ▼aDescription based on publisher supplied metadata and other sources.▲ | ||
590 | ▼aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2019. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. ▲ | ||
650 | 0 | ▼aManagement science.▲ | |
650 | 0 | ▼aManagement science-Case studies.▲ | |
650 | 0 | ▼aOperations research-Case studies.▲ | |
655 | 4 | ▼aElectronic books.▲ | |
700 | 1 | ▼aStair, Ralph M.▲ | |
700 | 1 | ▼aHanna, Michael E.▲ | |
700 | 1 | ▼aHale, Trevor S.▲ | |
776 | 0 | 8 | ▼iPrint version:▼aRender, Barry▼tQuantitative Analysis for Management, Global Edition▼dHarlow, United Kingdom : Pearson Education Limited,c2017▼z9781292217659▲ |
797 | 2 | ▼aProQuest (Firm)▲ | |
856 | 4 | 0 | ▼uhttps://ebookcentral.proquest.com/lib/pusan/detail.action?docID=5186292▼zClick to View▲ |
Quantitative Analysis for Management, Global Edition
자료유형
국외eBook
서명/책임사항
Quantitative Analysis for Management, Global Edition.
판사항
13th ed.
형태사항
1 online resource (610 pages)
내용주기
Cover -- Title Page -- Copyright Page -- About the Authors -- Brief Contents -- Contents -- Preface -- Acknowledgments -- Chapter 1: Introduction to Quantitative Analysis -- 1.1. What Is Quantitative Analysis? -- 1.2. Business Analytics -- 1.3. The Quantitative Analysis Approach -- Defining the Problem -- Developing a Model -- Acquiring Input Data -- Developing a Solution -- Testing the Solution -- Analyzing the Results and Sensitivity Analysis -- Implementing the Results -- The Quantitative Analysis Approach and Modeling in the Real World -- 1.4. How to Develop a Quantitative Analysis Model -- The Advantages of Mathematical Modeling -- Mathematical Models Categorized by Risk -- 1.5. The Role of Computers and Spreadsheet Models in the Quantitative Analysis Approach -- 1.6. Possible Problems in the Quantitative Analysis Approach -- Defining the Problem -- Developing a Model -- Acquiring Input Data -- Developing a Solution -- Testing the Solution -- Analyzing the Results -- 1.7. Implementation-Not Just the Final Step -- Lack of Commitment and Resistance to Change -- Lack of Commitment by Quantitative Analysts -- Summary -- Glossary -- Key Equations -- Self-Test -- Discussion Questions and Problems -- Case Study: Food and Beverages at Southwestern University Football Games -- Bibliography -- Chapter 2: Probability Concepts and Applications -- 2.1. Fundamental Concepts -- Two Basic Rules of Probability -- Types of Probability -- Mutually Exclusive and Collectively Exhaustive Events -- Unions and Intersections of Events -- Probability Rules for Unions, Intersections, and Conditional Probabilities -- 2.2. Revising Probabilities with Bayes' Theorem -- General Form of Bayes' Theorem -- 2.3. Further Probability Revisions -- 2.4. Random Variables -- 2.5. Probability Distributions -- Probability Distribution of a Discrete Random Variable.
Expected Value of a Discrete Probability Distribution -- Variance of a Discrete Probability Distribution -- Probability Distribution of a Continuous Random Variable -- 2.6. The Binomial Distribution -- Solving Problems with the Binomial Formula -- Solving Problems with Binomial Tables -- 2.7. The Normal Distribution -- Area Under the Normal Curve -- Using the Standard Normal Table -- Haynes Construction Company Example -- The Empirical Rule -- 2.8. The F Distribution -- 2.9. The Exponential Distribution -- Arnold's Muffler Example -- 2.10. The Poisson Distribution -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: WTVX -- Bibliography -- Appendix 2.1: Derivation of Bayes' Theorem -- Chapter 3: Decision Analysis -- 3.1. The Six Steps in Decision Making -- 3.2. Types of Decision-Making Environments -- 3.3. Decision Making Under Uncertainty -- Optimistic -- Pessimistic -- Criterion of Realism (Hurwicz Criterion) -- Equally Likely (Laplace) -- Minimax Regret -- 3.4. Decision Making Under Risk -- Expected Monetary Value -- Expected Value of Perfect Information -- Expected Opportunity Loss -- Sensitivity Analysis -- A Minimization Example -- 3.5. Using Software for Payoff Table Problems -- QM for Windows -- Excel QM -- 3.6. Decision Trees -- Efficiency of Sample Information -- Sensitivity Analysis -- 3.7. How Probability Values Are Estimated by Bayesian Analysis -- Calculating Revised Probabilities -- Potential Problem in Using Survey Results -- 3.8. Utility Theory -- Measuring Utility and Constructing a Utility Curve -- Utility as a Decision-Making Criterion -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Starting Right Corporation -- Case Study: Toledo Leather Company -- Case Study: Blake Electronics.
Bibliography -- Chapter 4: Regression Models -- 4.1. Scatter Diagrams -- 4.2. Simple Linear Regression -- 4.3. Measuring the Fit of the Regression Model -- Coefficient of Determination -- Correlation Coefficient -- 4.4. Assumptions of the Regression Model -- Estimating the Variance -- 4.5. Testing the Model for Significance -- Triple A Construction Example -- The Analysis of Variance (ANOVA) Table -- Triple A Construction ANOVA Example -- 4.6. Using Computer Software for Regression -- Excel 2016 -- Excel QM -- QM for Windows -- 4.7. Multiple Regression Analysis -- Evaluating the Multiple Regression Model -- Jenny Wilson Realty Example -- 4.8. Binary or Dummy Variables -- 4.9. Model Building -- Stepwise Regression -- Multicollinearity -- 4.10. Nonlinear Regression -- 4.11. Cautions and Pitfalls in Regression Analysis -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: North-South Airline -- Bibliography -- Appendix 4.1: Formulas for Regression Calculations -- Chapter 5: Forecasting -- 5.1. Types of Forecasting Models -- Qualitative Models -- Causal Models -- Time-Series Models -- 5.2. Components of a Time-Series -- 5.3. Measures of Forecast Accuracy -- 5.4. Forecasting Models-Random Variations Only -- Moving Averages -- Weighted Moving Averages -- Exponential Smoothing -- Using Software for Forecasting Time Series -- 5.5. Forecasting Models-Trend and Random Variations -- Exponential Smoothing with Trend -- Trend Projections -- 5.6. Adjusting for Seasonal Variations -- Seasonal Indices -- Calculating Seasonal Indices with No Trend -- Calculating Seasonal Indices with Trend -- 5.7. Forecasting Models-Trend, Seasonal, and Random Variations -- The Decomposition Method -- Software for Decomposition -- Using Regression with Trend and Seasonal Components.
5.8. Monitoring and Controlling Forecasts -- Adaptive Smoothing -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Forecasting Attendance at SWU Football Games -- Case Study: Forecasting Monthly Sales -- Bibliography -- Chapter 6: Inventory Control Models -- 6.1. Importance of Inventory Control -- Decoupling Function -- Storing Resources -- Irregular Supply and Demand -- Quantity Discounts -- Avoiding Stockouts and Shortages -- 6.2. Inventory Decisions -- 6.3. Economic Order Quantity: Determining How Much to Order -- Inventory Costs in the EOQ Situation -- Finding the EOQ -- Sumco Pump Company Example -- Purchase Cost of Inventory Items -- Sensitivity Analysis with the EOQ Model -- 6.4. Reorder Point: Determining When to Order -- 6.5. EOQ Without the Instantaneous Receipt Assumption -- Annual Carrying Cost for Production Run Model -- Annual Setup Cost or Annual Ordering Cost -- Determining the Optimal Production Quantity -- Brown Manufacturing Example -- 6.6. Quantity Discount Models -- Brass Department Store Example -- 6.7. Use of Safety Stock -- 6.8. Single-Period Inventory Models -- Marginal Analysis with Discrete Distributions -- Caf챕 du Donut Example -- Marginal Analysis with the Normal Distribution -- Newspaper Example -- 6.9. ABC Analysis -- 6.10. Dependent Demand: The Case for Material Requirements Planning -- Material Structure Tree -- Gross and Net Material Requirements Plans -- Two or More End Products -- 6.11. Just-In-Time Inventory Control -- 6.12. Enterprise Resource Planning -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Martin-Pullin Bicycle Corporation -- Bibliography -- Appendix 6.1: Inventory Control with QM for Windows.
Chapter 7: Linear Programming Models: Graphical and Computer Methods -- 7.1. Requirements of a Linear Programming Problem -- 7.2. Formulating LP Problems -- Flair Furniture Company -- 7.3. Graphical Solution to an LP Problem -- Graphical Representation of Constraints -- Isoprofit Line Solution Method -- Corner Point Solution Method -- Slack and Surplus -- 7.4. Solving Flair Furniture's LP Problem Using QM for Windows, Excel 2016, and Excel QM -- Using QM for Windows -- Using Excel's Solver Command to Solve LP Problems -- Using Excel QM -- 7.5. Solving Minimization Problems -- Holiday Meal Turkey Ranch -- 7.6. Four Special Cases in LP -- No Feasible Solution -- Unboundedness -- Redundancy -- Alternate Optimal Solutions -- 7.7. Sensitivity Analysis -- High Note Sound Company -- Changes in the Objective Function Coefficient -- QM for Windows and Changes in Objective Function Coefficients -- Excel Solver and Changes in Objective Function Coefficients -- Changes in the Technological Coefficients -- Changes in the Resources or Right-Hand-Side Values -- QM for Windows and Changes in Right-Hand- Side Values -- Excel Solver and Changes in Right-Hand-Side Values -- Summary -- Glossary -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Mexicana Wire Winding, Inc. -- Bibliography -- Chapter 8: Linear Programming Applications -- 8.1. Marketing Applications -- Media Selection -- Marketing Research -- 8.2. Manufacturing Applications -- Production Mix -- Production Scheduling -- 8.3. Employee Scheduling Applications -- Labor Planning -- 8.4. Financial Applications -- Portfolio Selection -- Truck Loading Problem -- 8.5. Ingredient Blending Applications -- Diet Problems -- Ingredient Mix and Blending Problems -- 8.6. Other Linear Programming Applications -- Summary -- Self-Test -- Problems -- Case Study: Cable & Moore -- Bibliography.
Chapter 9: Transportation, Assignment, and Network Models.
Expected Value of a Discrete Probability Distribution -- Variance of a Discrete Probability Distribution -- Probability Distribution of a Continuous Random Variable -- 2.6. The Binomial Distribution -- Solving Problems with the Binomial Formula -- Solving Problems with Binomial Tables -- 2.7. The Normal Distribution -- Area Under the Normal Curve -- Using the Standard Normal Table -- Haynes Construction Company Example -- The Empirical Rule -- 2.8. The F Distribution -- 2.9. The Exponential Distribution -- Arnold's Muffler Example -- 2.10. The Poisson Distribution -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: WTVX -- Bibliography -- Appendix 2.1: Derivation of Bayes' Theorem -- Chapter 3: Decision Analysis -- 3.1. The Six Steps in Decision Making -- 3.2. Types of Decision-Making Environments -- 3.3. Decision Making Under Uncertainty -- Optimistic -- Pessimistic -- Criterion of Realism (Hurwicz Criterion) -- Equally Likely (Laplace) -- Minimax Regret -- 3.4. Decision Making Under Risk -- Expected Monetary Value -- Expected Value of Perfect Information -- Expected Opportunity Loss -- Sensitivity Analysis -- A Minimization Example -- 3.5. Using Software for Payoff Table Problems -- QM for Windows -- Excel QM -- 3.6. Decision Trees -- Efficiency of Sample Information -- Sensitivity Analysis -- 3.7. How Probability Values Are Estimated by Bayesian Analysis -- Calculating Revised Probabilities -- Potential Problem in Using Survey Results -- 3.8. Utility Theory -- Measuring Utility and Constructing a Utility Curve -- Utility as a Decision-Making Criterion -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Starting Right Corporation -- Case Study: Toledo Leather Company -- Case Study: Blake Electronics.
Bibliography -- Chapter 4: Regression Models -- 4.1. Scatter Diagrams -- 4.2. Simple Linear Regression -- 4.3. Measuring the Fit of the Regression Model -- Coefficient of Determination -- Correlation Coefficient -- 4.4. Assumptions of the Regression Model -- Estimating the Variance -- 4.5. Testing the Model for Significance -- Triple A Construction Example -- The Analysis of Variance (ANOVA) Table -- Triple A Construction ANOVA Example -- 4.6. Using Computer Software for Regression -- Excel 2016 -- Excel QM -- QM for Windows -- 4.7. Multiple Regression Analysis -- Evaluating the Multiple Regression Model -- Jenny Wilson Realty Example -- 4.8. Binary or Dummy Variables -- 4.9. Model Building -- Stepwise Regression -- Multicollinearity -- 4.10. Nonlinear Regression -- 4.11. Cautions and Pitfalls in Regression Analysis -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: North-South Airline -- Bibliography -- Appendix 4.1: Formulas for Regression Calculations -- Chapter 5: Forecasting -- 5.1. Types of Forecasting Models -- Qualitative Models -- Causal Models -- Time-Series Models -- 5.2. Components of a Time-Series -- 5.3. Measures of Forecast Accuracy -- 5.4. Forecasting Models-Random Variations Only -- Moving Averages -- Weighted Moving Averages -- Exponential Smoothing -- Using Software for Forecasting Time Series -- 5.5. Forecasting Models-Trend and Random Variations -- Exponential Smoothing with Trend -- Trend Projections -- 5.6. Adjusting for Seasonal Variations -- Seasonal Indices -- Calculating Seasonal Indices with No Trend -- Calculating Seasonal Indices with Trend -- 5.7. Forecasting Models-Trend, Seasonal, and Random Variations -- The Decomposition Method -- Software for Decomposition -- Using Regression with Trend and Seasonal Components.
5.8. Monitoring and Controlling Forecasts -- Adaptive Smoothing -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Forecasting Attendance at SWU Football Games -- Case Study: Forecasting Monthly Sales -- Bibliography -- Chapter 6: Inventory Control Models -- 6.1. Importance of Inventory Control -- Decoupling Function -- Storing Resources -- Irregular Supply and Demand -- Quantity Discounts -- Avoiding Stockouts and Shortages -- 6.2. Inventory Decisions -- 6.3. Economic Order Quantity: Determining How Much to Order -- Inventory Costs in the EOQ Situation -- Finding the EOQ -- Sumco Pump Company Example -- Purchase Cost of Inventory Items -- Sensitivity Analysis with the EOQ Model -- 6.4. Reorder Point: Determining When to Order -- 6.5. EOQ Without the Instantaneous Receipt Assumption -- Annual Carrying Cost for Production Run Model -- Annual Setup Cost or Annual Ordering Cost -- Determining the Optimal Production Quantity -- Brown Manufacturing Example -- 6.6. Quantity Discount Models -- Brass Department Store Example -- 6.7. Use of Safety Stock -- 6.8. Single-Period Inventory Models -- Marginal Analysis with Discrete Distributions -- Caf챕 du Donut Example -- Marginal Analysis with the Normal Distribution -- Newspaper Example -- 6.9. ABC Analysis -- 6.10. Dependent Demand: The Case for Material Requirements Planning -- Material Structure Tree -- Gross and Net Material Requirements Plans -- Two or More End Products -- 6.11. Just-In-Time Inventory Control -- 6.12. Enterprise Resource Planning -- Summary -- Glossary -- Key Equations -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Martin-Pullin Bicycle Corporation -- Bibliography -- Appendix 6.1: Inventory Control with QM for Windows.
Chapter 7: Linear Programming Models: Graphical and Computer Methods -- 7.1. Requirements of a Linear Programming Problem -- 7.2. Formulating LP Problems -- Flair Furniture Company -- 7.3. Graphical Solution to an LP Problem -- Graphical Representation of Constraints -- Isoprofit Line Solution Method -- Corner Point Solution Method -- Slack and Surplus -- 7.4. Solving Flair Furniture's LP Problem Using QM for Windows, Excel 2016, and Excel QM -- Using QM for Windows -- Using Excel's Solver Command to Solve LP Problems -- Using Excel QM -- 7.5. Solving Minimization Problems -- Holiday Meal Turkey Ranch -- 7.6. Four Special Cases in LP -- No Feasible Solution -- Unboundedness -- Redundancy -- Alternate Optimal Solutions -- 7.7. Sensitivity Analysis -- High Note Sound Company -- Changes in the Objective Function Coefficient -- QM for Windows and Changes in Objective Function Coefficients -- Excel Solver and Changes in Objective Function Coefficients -- Changes in the Technological Coefficients -- Changes in the Resources or Right-Hand-Side Values -- QM for Windows and Changes in Right-Hand- Side Values -- Excel Solver and Changes in Right-Hand-Side Values -- Summary -- Glossary -- Solved Problems -- Self-Test -- Discussion Questions and Problems -- Case Study: Mexicana Wire Winding, Inc. -- Bibliography -- Chapter 8: Linear Programming Applications -- 8.1. Marketing Applications -- Media Selection -- Marketing Research -- 8.2. Manufacturing Applications -- Production Mix -- Production Scheduling -- 8.3. Employee Scheduling Applications -- Labor Planning -- 8.4. Financial Applications -- Portfolio Selection -- Truck Loading Problem -- 8.5. Ingredient Blending Applications -- Diet Problems -- Ingredient Mix and Blending Problems -- 8.6. Other Linear Programming Applications -- Summary -- Self-Test -- Problems -- Case Study: Cable & Moore -- Bibliography.
Chapter 9: Transportation, Assignment, and Network Models.
요약주기
For courses in management science and decision modeling. � Foundational understanding of management science through real-world problems and solutions Quantitative Analysis for Management helps students to develop a real-world understanding of business analytics, quantitative methods, and management science by emphasizing model building, tangible examples, and computer applications. The authors offer an accessible introduction to mathematical models and then students apply those models using step-by-step, how-to instructions. For more intricate mathematical procedures, the 13th Edition offers a flexible approach, allowing instructors to omit specific sections without interrupting the flow of the material. Supporting computer software enables instructors to focus on the managerial problems and solutions, rather than spending valuable class time on the details of algorithms.
기타형태저록
ISBN
9781292217680
저자의 다른
저작물보기
저작물보기
북토크
자유롭게 책을 읽고
느낀점을 적어주세요
글쓰기
느낀점을 적어주세요
청구기호 브라우징
관련 인기대출 도서