학술논문

First constraints on WIMP-nucleon effective field theory couplings in an extended energy region from LUX-ZEPLIN
Document Type
article
Source
Physical Review D. 109(9)
Subject
Nuclear and Plasma Physics
Particle and High Energy Physics
Physical Sciences
Affordable and Clean Energy
Language
Abstract
Following the first science results of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time projection chamber operating from the Sanford Underground Research Facility in Lead, South Dakota, USA, we report the initial limits on a model-independent nonrelativistic effective field theory describing the complete set of possible interactions of a weakly interacting massive particle (WIMP) with a nucleon. These results utilize the same 5.5 t fiducial mass and 60 live days of exposure collected for the LZ spin-independent and spin-dependent analyses while extending the upper limit of the energy region of interest by a factor of 7.5 to 270 keV. No significant excess in this high energy region is observed. Using a profile-likelihood ratio analysis, we report 90% confidence level exclusion limits on the coupling of each individual nonrelativistic WIMP-nucleon operator for both elastic and inelastic interactions in the isoscalar and isovector bases.