학술논문

3D-HA Scaffold Functionalized by Extracellular Matrix of Stem Cells Promotes Bone Repair
ORIGINAL RESEARCH
Document Type
Academic Journal
Source
International Journal of Nanomedicine. August 31, 2020, Vol. 15, p5825, 14 p.
Subject
China
Language
English
ISSN
1178-2013
Abstract
Introduction Currently, the application of tissue engineering technology in bone repair is a hot topic in the field of regenerative medicine, and the three key components are tissue-engineered scaffolds, seed [...]
Background and Purpose: The extracellular matrix (ECM) derived from bone marrow mesenchymal stem cells (BMSCs) has been used in regenerative medicine because of its good biological activity; however, its poor mechanical properties limit its application in bone regeneration. The purpose of this study is to construct a three dimensional-printed hydroxyapatite (3D-HA)/BMSC-ECM composite scaffold that not only has biological activity but also sufficient mechanical strength and reasonably distributed spatial structure. Methods: A BMSC-ECM was first extracted and formed into micron-sized particles, and then the ECM particles were modified onto the surface of 3D-HA scaffolds using an innovative linking method to generate composite 3D-HA/BMSC-ECM scaffolds. The 3D-HA scaffolds were used as the control group. The basic properties, biocompatibility and osteogenesis ability of both scaffolds were tested in vitro. Finally, a critical skull defect rat model was created and the osteogenesis effect of the scaffolds was evaluated in vivo. Results: The compressive modulus of the composite scaffolds reached 9.45[+ or -]0.32 MPa, which was similar to that of the 3D-HA scaffolds (p>0.05). The pore size of the two scaffolds was 305[+ or -]47 um and 315[+ or -]34 um (p>0.05), respectively. A CCK-8 assay indicated that the scaffolds did not have cytotoxicity. The composite scaffolds had good cell adhesion ability, with a cell adhesion rate of up to 76.00[+ or -]6.17% after culturing for 7 hours, while that of the 3D-HA scaffolds was 51.85[+ or -]4.77% (p Conclusion: We conclude that BMSC-ECM is a good osteogenic material and that the composite scaffolds have good osteogenic ability, which provides a new method and concept for the repair of bone defects. Keywords: bone tissue engineering, extracellular matrix, stem cells, 3D printed scaffold, osteogenesis