학술논문

Enabling mMTC in Remote Areas: LoRaWAN and LEO Satellite Integration for Offshore Wind Farm Monitoring
Document Type
Periodical
Source
IEEE Transactions on Industrial Informatics IEEE Trans. Ind. Inf. Industrial Informatics, IEEE Transactions on. 18(6):3744-3753 Jun, 2022
Subject
Power, Energy and Industry Applications
Signal Processing and Analysis
Computing and Processing
Communication, Networking and Broadcast Technologies
Wind turbines
Wind farms
Satellite broadcasting
Monitoring
Sensors
Satellites
Costs
LoRaWAN
massive machine-type connectivity (mMTC)
monitoring
remote area
renewable
satellites
wind turbines
wireless sensor network
Language
ISSN
1551-3203
1941-0050
Abstract
The offshore wind farms are gaining momentum due to their promise to offer sustainable energy with low pollution and greenhouse gas emission. However, despite all the immense technological progress of recent years, the operation in a harsh and hard-to-reach environment remains challenging. According to the reports, each offshore wind turbine requires five maintenance visits a year on average, and the cumulative repair costs constitute around 30% of the turbine’s life-cycle expenditure. Motivated by the advancement of massive machine-type connectivity (mMTC) and satellite technologies, in this study, we investigate the potential of these to enable remote monitoring of the offshore wind farms. Specifically, the two alternative architectures are considered. The indirect architecture relies on using a local mMTC gateway (GW) with a backbone over a reliable communication channel (e.g., satellite or wire-based). The direct approach implies the transmission of the data by sensors on the wind turbines directly to the mMTC GW on the low-Earth-orbit satellite. The details of the system design, the alternative implementation strategies, and relevant pros, cons, and tradeoffs are pin-pointed. Finally, we employ simulations using realistic deployment and traffic and advanced propagation and collision models to characterize these two approaches’ feasibility and packet delivery probability numerically when implemented over LoRaWAN mMTC technology.