학술논문

BACTrack: Building Appearance Collection for Aerial Tracking
Document Type
Periodical
Source
IEEE Transactions on Circuits and Systems for Video Technology IEEE Trans. Circuits Syst. Video Technol. Circuits and Systems for Video Technology, IEEE Transactions on. 34(6):5002-5017 Jun, 2024
Subject
Components, Circuits, Devices and Systems
Communication, Networking and Broadcast Technologies
Computing and Processing
Signal Processing and Analysis
Target tracking
Transformers
Feature extraction
Autonomous aerial vehicles
Object tracking
Head
Task analysis
UAV tracking
temporal information
multi-template fusion
Language
ISSN
1051-8215
1558-2205
Abstract
Siamese network-based trackers have shown remarkable success in aerial tracking. Most previous works, however, usually perform template matching only between the initial template and the search region and thus fail to deal with rapidly changing targets that often appear in aerial tracking. As a remedy, this work presents Building Appearance Collection Tracking (BACTrack). This simple yet effective tracking framework builds a dynamic collection of target templates online and performs efficient multi-template matching to achieve robust tracking. Specifically, BACTrack mainly comprises a Mixed-Temporal Transformer (MTT) and an appearance discriminator. The former is responsible for efficiently building relationships between the search region and multiple target templates in parallel through a mixed-temporal attention mechanism. At the same time, the appearance discriminator employs an online adaptive template-update strategy to ensure that the collected multiple templates remain reliable and diverse, allowing them to closely follow rapid changes in the target’s appearance and suppress background interference during tracking. Extensive experiments show that our BACTrack achieves top performance on four challenging aerial tracking benchmarks while maintaining an impressive speed of over 87 FPS on a single GPU. Speed tests on embedded platforms also validate our potential suitability for deployment on UAV platforms.