학술논문

Transductive Learning Models for Accurate Ambulatory Gait Analysis in Elderly Residents of Assisted Living Facilities
Document Type
Periodical
Source
IEEE Transactions on Neural Systems and Rehabilitation Engineering IEEE Trans. Neural Syst. Rehabil. Eng. Neural Systems and Rehabilitation Engineering, IEEE Transactions on. 30:124-134 2022
Subject
Bioengineering
Computing and Processing
Robotics and Control Systems
Signal Processing and Analysis
Communication, Networking and Broadcast Technologies
Training
Instruments
Footwear
Analytical models
Data models
Computational modeling
Optimized production technology
Ambulatory gait analysis
transductive learning
support vector regression
wearable technology
instrumented footwear
Language
ISSN
1534-4320
1558-0210
Abstract
Instrumented footwear represents a promising technology for spatiotemporal gait analysis in out-of-the-lab conditions. However, moderate accuracy impacts this technology’s ability to capture subtle, but clinically meaningful, changes in gait patterns that may indicate adverse outcomes or underlying neurological conditions. This limitation hampers the use of instrumented footwear to aid functional assessments and clinical decision making. This paper introduces new transductive-learning inference models that substantially reduce measurement errors relative to conventional data processing techniques, without requiring subject-specific labelled data. The proposed models use subject-optimized input features and hyperparameters to adjust the spatiotemporal gait metrics (i.e., stride time, length, and velocity, swing time, and double support time) obtained with conventional techniques, resulting in computationally simpler models compared to end-to-end machine learning approaches. Model validity and reliability were evaluated against a gold-standard electronic walkway during a clinical gait performance test (6-minute walk test) administered to N = 95 senior residents of assisted living facilities with diverse levels of gait and balance impairments. Average reductions in absolute errors relative to conventional techniques were −42.0% and −33.5% for spatial and gait-phase parameters, respectively, indicating the potential of transductive learning models for improving the accuracy of instrumented footwear for ambulatory gait analysis.