학술논문

First-principle SiPM Characterization to Enable Radiation Detection in Harsh Environments
Document Type
Conference
Source
2022 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2022 IEEE. :1-5 Nov, 2022
Subject
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Nuclear Engineering
Photonics and Electrooptics
Signal Processing and Analysis
Photomultipliers
Fill factor (solar cell)
Radiation detectors
Crosstalk
Detectors
Microcell networks
Photonics
Language
ISSN
2577-0829
Abstract
This paper reports the experimental comparison of two silicon photomultipliers (SiPMs): the MicroFJ-30035 by ONSemi and the ASD-NUV3S-P by AdvanSiD, in terms of gain, dark count rate, and crosstalk probability. SiPMs are solid state photon detectors that enable high sensitivity light readout. They have low-voltage power requirements, small form factor, and are durable. For these reasons, they are being considered as replacements for vacuum photomultiplier tubes in some applications. However, their performance relies on several parameters, which need to be carefully characterized to enable their high-fidelity simulation and SiPM-based design of devices capable to operate in harsh environments. The parameters tend to vary between manufacturers and processing technologies. In this work, we have compared the MicroFJ and ASD SiPMs in terms of gain, dark count rate, and crosstalk probability. We found that the dark count rate of the MicroFJ was 16% higher than the ASD. Also, the gain of the MicroFJ is 3.5 times higher than the ASD. Finally, the crosstalk probability of the ASD 1.96 times higher than the MicroFJ. Our findings are in good agreement with manufacturer reported values.