학술논문

Optimal Cooperative Offloading Scheme for Energy Efficient Multi-Access Edge Computation
Document Type
Periodical
Source
IEEE Access Access, IEEE. 8:53931-53941 2020
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Task analysis
Servers
Energy consumption
Computational modeling
Cloud computing
Wireless communication
Throughput
Energy efficiency
MEC
NP-hard problem
SCD
cooperative offloading
Language
ISSN
2169-3536
Abstract
The distributed cooperative offloading technique with wireless setting and power transmission provides a possible solution to meet the requirements of next-generation Multi-access Edge Computation (MEC). MEC is a model which avails cloud computing the aptitude to smoothly compute data at the edge of a largely dense network and in nearness to smart communicating devices (SCDs). This paper presents a cooperative offloading technique based on the Lagrangian Suboptimal Convergent Computation Offloading Algorithm (LSCCOA) for multi-access MEC in a distributed Internet of Things (IoT) network. A computational competition of the SCDs for limited resources which tends to obstructs smooth task offloading for MEC in an IoT high demand network is considered. The proposed suboptimal computational algorithm is implemented to perform task offloading which is optimized at the cloud edge server without relocating it to the centralized network. These resulted in a minimized weighted sum of transmit power consumption and outputs as a mixed-integer optimization problem. Also, the derived fast-convergent suboptimal algorithm is implemented to resolve the non-deterministic polynomial-time (NP)-hard problem. In conclusion, simulation results are performed to prove that the proposed algorithm substantially outperforms recent techniques with regards to energy efficiency, energy consumption reduction, throughput, and transmission delay performance.