학술논문

Detailed studies of $$^{100}$$ 100 Mo two-neutrino double beta decay in NEMO-3
Document Type
article
Source
European Physical Journal C: Particles and Fields, Vol 79, Iss 5, Pp 1-11 (2019)
Subject
Astrophysics
QB460-466
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Language
English
ISSN
1434-6044
1434-6052
Abstract
Abstract The full data set of the NEMO-3 experiment has been used to measure the half-life of the two-neutrino double beta decay of $$^{100}$$ 100 Mo to the ground state of $$^{100}$$ 100 Ru, $$T_{1/2} = \left[ 6.81 \pm 0.01\,\left( \text{ stat }\right) ^{+0.38}_{-0.40}\,\left( \text{ syst }\right) \right] \times 10^{18}$$ T1/2=6.81±0.01stat-0.40+0.38syst×1018 year. The two-electron energy sum, single electron energy spectra and distribution of the angle between the electrons are presented with an unprecedented statistics of $$5\times 10^5$$ 5×105 events and a signal-to-background ratio of $$\sim $$ ∼ 80. Clear evidence for the Single State Dominance model is found for this nuclear transition. Limits on Majoron emitting neutrinoless double beta decay modes with spectral indices of $$\mathrm{n}=2,3,7$$ n=2,3,7 , as well as constraints on Lorentz invariance violation and on the bosonic neutrino contribution to the two-neutrino double beta decay mode are obtained.