학술논문

Dual-template synthesis of SFO-type aluminophosphate with enhanced water-sorption-driven cooling performance
Document Type
article
Source
Heliyon, Vol 10, Iss 9, Pp e30744- (2024)
Subject
Aluminophosphates
Water adsorption
Dual templates
Adsorption cooling
Science (General)
Q1-390
Social sciences (General)
H1-99
Language
English
ISSN
2405-8440
Abstract
Water-based adsorption chillers (ADC) driven by low-grade thermal energy are environment-friendly alternatives to the traditional compression ones to realize the net zero carbon target. Aluminophosphates molecular sieve (AlPOs) is an excellent material for water-based adsorption applications. However, AlPOs suffers from relatively high cost attributed to the extensive use of expensive structure direct agents (SDAs). This study employed a dual-template method, using cheap organic amine as a dual-template, to synthesize low-cost and excellent adsorbent AlPOs with SFO topology (AlPO-SFO). AlPO-SFO synthesized with dual templates shows high crystallinity, large micropore volume, excellent water uptake, and low regeneration temperature. AlPO-SFO guided by 4-dimethylaminopyridine (4-DMAPy) and diethanolamine (DEOA) molar composition of 0.4 and 0.1 exhibits large microporous volume (0.30 ml g−1), high water uptake (0.26 g g−1 at P/P0 = 0.25) and low regeneration temperature (65 °C). Importantly, this AlPO-SFO exhibits a high coefficient of performance (COP) of 0.89 for cooling at a low driven temperature of 64 °C. The additive amine providing alkaline medium ensures the practical synthesis of AlPO-SFO when expensive 4-DMAPy decreases, endowing the 42 % reduction of the raw material cost. The results provide a cheaper synthesis route of AlPO-SFO, which is conducive to its large-scale production as a distinguished adsorbent for adsorption chillers.