학술논문

SRGeJ045359.9+622444: A 55-min Period Eclipsing AM CVn Discovered from a Joint SRG/eROSITA + ZTF Search
Document Type
Working Paper
Source
Subject
Astrophysics - High Energy Astrophysical Phenomena
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
AM CVn systems are ultra-compact binaries where a white dwarf accretes from a helium-rich degenerate or semi-degenerate donor. Some AM CVn systems will be among the loudest sources of gravitational waves for the upcoming Laser Interferometer Space Antenna (LISA), yet the formation channel of AM CVns remains uncertain. We report the study and characterisation of a new eclipsing AM CVn, SRGeJ045359.9+622444 (hereafter SRGeJ0453), discovered from a joint SRG/eROSITA and ZTF program to identify cataclysmic variables (CVs). We obtained optical photometry to confirm the eclipse of SRGeJ0453 and determine the orbital period to be $P_\textrm{orb} = 55.0802 \pm 0.0003$ min. We constrain the binary parameters by modeling the high-speed photometry and radial velocity curves and find $M_\textrm{donor} = 0.044 \pm0.024 M_{\odot}$ and $R_\textrm{donor}=0.078 \pm 0.012 R_{\odot}$. The X-ray spectrum is approximated by a power-law model with an unusually flat photon index of $\Gamma\sim 1$ previously seen in magnetic CVs with SRG/eROSITA, but verifying the magnetic nature of SRGeJ0453 requires further investigation. Optical spectroscopy suggests that the donor star of SRGeJ0453 could have initially been a He star or a He white dwarf. SRGeJ0453 is the ninth eclipsing AM CVn system published to date, and its lack of optical outbursts have made it elusive in previous surveys. The discovery of SRGeJ0453 using joint X-ray and optical surveys highlights the potential for discovering similar systems in the near future.
Comment: Submitted to ApJ