학술논문

The case for a U(1)$_\pi$ Quantum Spin Liquid Ground State in the Dipole-Octupole Pyrochlore Ce$_2$Zr$_2$O$_7$
Document Type
Working Paper
Source
Subject
Condensed Matter - Strongly Correlated Electrons
Language
Abstract
The Ce$^{3+}$ pseudospin-$\frac{1}{2}$ degrees of freedom in the pyrochlore magnet Ce$_2$Zr$_2$O$_7$ are known to possess dipole-octupole (DO) character, making it a candidate for novel quantum spin liquid (QSL) ground states at low temperatures. We report new polarized neutron diffraction at low temperatures, as well as heat capacity ($C_p$) measurements on single crystal Ce$_2$Zr$_2$O$_7$. The former bears both similarities and differences from that measured in the canonical dipolar spin ice compound Ho$_2$Ti$_2$O$_7$, while the latter rises sharply at low temperatures, initially plateauing near 0.08 K, before falling off towards a high temperature zero beyond 3 K. Above $\sim$0.5 K, the $C_p$ data set can be fit to the results of a quantum numerical linked cluster (NLC) calculation, carried out to 4$^{\mathrm{th}}$ order, that allows estimates for the terms in the near-neighbour XYZ Hamiltonian expected for such DO pyrochlore systems. Fits of the same theory to the temperature dependence of the magnetic susceptibility and unpolarized neutron scattering complement this analysis. A comparison between the resulting best fit NLC calculation and the polarized neutron diffraction shows both agreement and discrepancies, mostly in the form of zone-boundary diffuse scattering in the non-spin flip channel, which are attributed to interactions beyond near-neighbours. The lack of an observed thermodynamic anomaly and the constraints on the near-neighbour XYZ Hamiltonian suggest that Ce$_2$Zr$_2$O$_7$ realizes a U(1)$_\pi$ QSL state at low temperatures, and one that likely resides near the boundary between dipolar and octupolar character.
Comment: 11 pages, 11 figures