학술논문

Recrystallization and Interdiffusion Processes in Laser-Annealed Strain-Relaxed Metastable Ge$_{0.89}$Sn0$_{.11}$
Document Type
Working Paper
Source
Subject
Physics - Applied Physics
Condensed Matter - Materials Science
Language
Abstract
The prospect of GeSn semiconductors for silicon-integrated infrared optoelectronics brings new challenges related to the metastability of this class of materials. As a matter of fact, maintaining a reduced thermal budget throughout all processing steps of GeSn devices is essential to avoid possible material degradation. This constraint is exacerbated by the need for higher Sn contents along with an enhanced strain relaxation to achieve efficient mid-infrared devices. Herein, as a low thermal budget solution for post-epitaxy processing, we elucidate the effects of laser thermal annealing (LTA) on strain-relaxed Ge$_{0.89}$Sn0$_{.11}$ layers and Ni-Ge$_{0.89}$Sn0$_{.11}$ contacts. Key diffusion and recrystallization processes are proposed and discussed in the light of systematic microstructural studies. LTA treatment at a fluence of 0.40 J/cm2 results in a 200-300 nm-thick layer where Sn atoms segregate toward the surface and in the formation of Sn-rich columnar structures in the LTA-affected region. These structures are reminiscent to those observed in the dislocation-assisted pipe-diffusion mechanism, while the buried GeSn layers remain intact. Moreover, by tailoring the LTA fluence, the contact resistance can be reduced without triggering phase separation across the whole GeSn multi-layer stacking. Indeed, a one order of magnitude decrease in the Ni-based specific contact resistance was obtained at the highest LTA fluence, thus confirming the potential of this method for the functionalization of direct bandgap GeSn materials.