학술논문

Testing EMRI models for Quasi-Periodic Eruptions with 3.5 years of monitoring eRO-QPE1
Document Type
Working Paper
Source
Subject
Astrophysics - High Energy Astrophysical Phenomena
Language
Abstract
Quasi-Periodic Eruptions (QPEs) are luminous X-ray outbursts recurring on hour timescales, observed from the nuclei of a growing handful of nearby low-mass galaxies. Their physical origin is still debated, and usually modeled as (a) accretion disk instabilities or (b) interaction of a supermassive black hole (SMBH) with a lower mass companion in an extreme mass-ratio inspiral (EMRI). EMRI models can be tested with several predictions related to the short- and long-term behavior of QPEs. In this study, we report on the ongoing 3.5-year NICER and XMM-Newton monitoring campaign of eRO-QPE1, which is known to exhibit erratic QPEs that have been challenging for the simplest EMRI models to explain. We report 1) complex, non-monotonic evolution in the long-term trends of QPE energy output and inferred emitting area; 2) the disappearance of the QPEs (within NICER detectability) in October 2023, then reappearance by January 2024 at a luminosity $\sim$100x fainter (and temperature $\sim$3x cooler) than initial discovery; 3) radio non-detections with MeerKAT and VLA observations partly contemporaneous with our NICER campaign (though not during outbursts); and 4) the presence of a possible $\sim$6-day modulation of the QPE timing residuals, which aligns with the expected nodal precession timescale of the underlying accretion disk. Our results tentatively support EMRI-disk collision models powering the QPEs, and we demonstrate that the timing modulation of QPEs may be used to jointly constrain the SMBH spin and disk density profile.
Comment: Accepted for publication in ApJ