학술논문

A Bose-Einstein Condensate in a Uniform Light-induced Vector Potential
Document Type
Working Paper
Source
Phys.Rev.Lett.102:130401,2009
Subject
Condensed Matter - Other Condensed Matter
Language
Abstract
We use a two-photon dressing field to create an effective vector gauge potential for Bose-condensed Rb atoms in the F=1 hyperfine ground state. The dressed states in this Raman field are spin and momentum superpositions, and we adiabatically load the atoms into the lowest energy dressed state. The effective Hamiltonian of these neutral atoms is like that of charged particles in a uniform magnetic vector potential, whose magnitude is set by the strength and detuning of Raman coupling. The spin and momentum decomposition of the dressed states reveals the strength of the effective vector potential, and our measurements agree quantitatively with a simple single-particle model. While the uniform effective vector potential described here corresponds to zero magnetic field, our technique can be extended to non-uniform vector potentials, giving non-zero effective magnetic fields.
Comment: 5 pages, submitted to Physical Review Letters