학술논문

A Cold-Atom Particle Collider
Document Type
Working Paper
Source
Subject
Condensed Matter - Quantum Gases
High Energy Physics - Experiment
High Energy Physics - Lattice
High Energy Physics - Phenomenology
Quantum Physics
Language
Abstract
A major objective of the strong ongoing drive to realize quantum simulators of gauge theories is achieving the capability to probe collider-relevant physics on them. In this regard, a highly pertinent and sought-after application is the controlled collisions of elementary and composite particles, as well as the scattering processes in their wake. Here, we propose particle-collision experiments in a cold-atom quantum simulator for a $1+1$D $\mathrm{U}(1)$ lattice gauge theory with a tunable topological $\theta$-term, where we demonstrate an experimentally feasible protocol to impart momenta to elementary (anti)particles and their meson composites. We numerically benchmark the collisions of moving wave packets for both elementary and composite particles, uncovering a plethora of rich phenomena, such as oscillatory string dynamics in the wake of elementary (anti)particle collisions due to confinement. We also probe string inversion and entropy production processes across Coleman's phase transition through far-from-equilibrium quenches. We further demonstrate how collisions of composite particles unveil their internal structure. Our work paves the way towards the experimental investigation of collision dynamics in state-of-the-art quantum simulators of gauge theories, and sets the stage for microscopic understanding of collider-relevant physics in these platforms.
Comment: $20$ pages, $15$ figures