학술논문

Anomalous tumbling of colloidal ellipsoids in Poiseuille flows
Document Type
Working Paper
Source
Subject
Condensed Matter - Soft Condensed Matter
Language
Abstract
Shear flows cause aspherical colloidal particles to tumble so that their orientations trace out complex trajectories known as Jeffery orbits. The Jeffery orbit of a prolate ellipsoid is predicted to align the particle's principal axis preferentially in the plane transverse to the axis of shear. Holographic microscopy measurements reveal instead that colloidal ellipsoids' trajectories in Poiseuille flows strongly favor an orientation inclined by roughly $\pi/8$ relative to this plane. This anomalous observation is consistent with at least two previous reports of colloidal rods and dimers of colloidal spheres in Poiseuille flow and therefore appears to be a generic, yet unexplained feature of colloidal transport at low Reynolds numbers.
Comment: 5 pages, 4 figures