학술논문

Exoplanet imaging with ELTs: exploring a second-stage AO with a Zernike wavefront sensor on the ESO/GHOST testbed
Document Type
Working Paper
Source
Subject
Astrophysics - Instrumentation and Methods for Astrophysics
Astrophysics - Earth and Planetary Astrophysics
Language
Abstract
We propose to explore a cascade extreme Adaptive optics (ExAO) approach with a second stage based on a Zernike wavefront sensor (ZWFS) for exoplanet imaging and spectroscopy. Most exoplanet imagers currently use a single-stage ExAO to correct for the effects of atmospheric turbulence and produce high-Strehl images of observed stars in the near-infrared. While such systems enable the observation of warm gaseous companions around nearby stars, adding a second-stage AO enables to push the wavefront correction further and possibly observe colder or smaller planets. This approach is currently investigated in different exoplanet imagers (VLT/SPHERE, Mag-AOX, Subaru/SCExAO) by considering a Pyramid wavefront sensor (PWFS) in the second arm to measure the residual atmospheric turbulence left from the first stage. Since these aberrations are expected to be very small (a few tens of nm in the near-infrared domain), we propose to investigate an alternative approach based on the ZWFS. This sensor is a promising concept with a small capture range to estimate residual wavefront errors thanks to its large sensitivity, simple phase reconstruction and easiness of implementation. In this contribution, we perform preliminary tests on the GHOST testbed at ESO to validate this approach experimentally. Additional experiments with petalling effects are also showed, giving promising wavefront correction results. Finally, we briefly discuss a first comparison between PWFS-based and ZWFS-based second-stage AO to draw preliminary conclusions on the interests of both schemes for exoplanet imaging and spectroscopy with the upgrade of the current exoplanet imagers and the envisioned ExAO instruments for ELTs.
Comment: 17 pages, 10 figures, pre-print of the proceeding of the AO4ELT7 conference held in June 2023 in Avignon, France