학술논문

Hints of a disrupted binary dwarf galaxy in the Sagittarius stream
Document Type
Working Paper
Source
Subject
Astrophysics - Astrophysics of Galaxies
Language
Abstract
In this work, we look for evidence of a non-unity mass ratio binary dwarf galaxy merger in the Sagittarius stream. Simulations of such a merger show that, upon merging with a host, particles from the less-massive galaxy will often mostly be found in the extended stream and less-so in the central remnant. Motivated by these simulations, we use APOGEE DR17 chemical data from approximately 1100 stars in both the Sagittarius remnant and stream to look for evidence of contamination from a second dwarf galaxy. This search is initially justified by the idea that disrupted binary dwarf galaxies provide a possible explanation of the Sagittarius bifurcation, and the location of the massive, chemically peculiar globular cluster NGC 2419 found within the stream of Sagittarius. We separate the Sagittarius data into its remnant and stream and compare the [Mg/Fe] content of the two populations. In particular, we select [Mg/Fe] to search for hints of unique star formation histories among our sample stars. Comparing the stream and remnant populations, we find regions have distinct [Mg/Fe] distributions for fixed [Fe/H], in addition to distinct chemical tracks in [Mg/Fe] -- [Fe/H] abundance space. We show that there are large regions of the tracks for which the probability of the two samples being drawn from the same distribution is very low (p < 0.05). Furthermore, we show that the two tracks can be fit with unique star formation histories using simple, one zone galactic chemical evolution models. While more work must be done to discern whether the hypothesis presented here is true, our work hints at the possibility that Sagittarius may consist of two dwarf galaxy progenitors.
Comment: 8 pages, 8 figures. Submitted to MNRAS. Comments welcome!