학술논문

A Multi-wavelength, Multi-epoch Monitoring Campaign of Accretion Variability in T Tauri Stars from the ODYSSEUS Survey. I. HST FUV and NUV Spectra
Document Type
Working Paper
Source
Subject
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
The Classical T Tauri Star (CTTS) stage is a critical phase of the star and planet formation process. In an effort to better understand the mass accretion process, which can dictate further stellar evolution and planet formation, a multi-epoch, multi-wavelength photometric and spectroscopic monitoring campaign of four CTTSs (TW Hya, RU Lup, BP Tau, and GM Aur) was carried out in 2021 and 2022/2023 as part of the Outflows and Disks Around Young Stars: Synergies for the Exploration of ULYSSES Spectra (ODYSSEUS) program. Here we focus on the HST UV spectra obtained by the HST Director's Discretionary Time UV Legacy Library of Young Stars as Essential Standards (ULLYSES) program. Using accretion shock modeling, we find that all targets exhibit accretion variability, varying from short increases in accretion rate by up to a factor of 3 within 48 hours, to longer decreases in accretion rate by a factor of 2.5 over the course of 1 year. This is despite the generally consistent accretion morphology within each target. Additionally, we test empirical relationships between accretion rate and UV luminosity and find stark differences, showing that these relationships should not be used to estimate the accretion rate for individual target. Our work reinforces that future multi-epoch and simultaneous multi-wavelength studies are critical in our understanding of the accretion process in low-mass star formation.
Comment: 37 pages, 14 figures