학술논문

Locus-Specific Isolation of the Nanog Chromatin Identifies Regulators Relevant to Pluripotency of Mouse Embryonic Stem Cells and Reprogramming of Somatic Cells.
Document Type
Article
Source
International Journal of Molecular Sciences. Dec2022, Vol. 23 Issue 23, p15242. 17p.
Subject
*SOMATIC cells
*EMBRYONIC stem cells
*RNA-binding proteins
*CHROMATIN
*PROTEOMICS
*PROMOTERS (Genetics)
*PLURIPOTENT stem cells
Language
ISSN
1661-6596
Abstract
Pluripotency is a crucial feature of pluripotent stem cells, which are regulated by the core pluripotency network consisting of key transcription factors and signaling molecules. However, relatively less is known about the molecular mechanisms that modify the core pluripotency network. Here we used the CAPTURE (CRISPR Affinity Purification in situ of Regulatory Elements) to unbiasedly isolate proteins assembled on the Nanog promoter in mouse embryonic stem cells (mESCs), and then tested their functional relevance to the maintenance of mESCs and reprogramming of somatic cells. Gene ontology analysis revealed that the identified proteins, including many RNA-binding proteins (RBPs), are enriched in RNA-related functions and gene expression. ChIP-qPCR experiments confirmed that BCLAF1, FUBP1, MSH6, PARK7, PSIP1, and THRAP3 occupy the Nanog promoter region in mESCs. Knockdown experiments of these factors show that they play varying roles in self-renewal, pluripotency gene expression, and differentiation of mESCs as well as in the reprogramming of somatic cells. Our results show the utility of unbiased identification of chromatin-associated proteins on a pluripotency gene in mESCs and reveal the functional relevance of RBPs in ESC differentiation and somatic cell reprogramming. [ABSTRACT FROM AUTHOR]