학술논문

Gene Expression-Based Dosimetry by Dose and Time in Mice Following Acute Radiation Exposure.
Document Type
Article
Source
PLoS ONE. Dec2013, Vol. 8 Issue 12, p1-1. 1p.
Subject
*GENE expression
*RADIATION dosimetry
*DRUG dosage
*ACUTE radiation syndrome
*MEDICAL care costs
*REGRESSION analysis
*LABORATORY mice
Language
ISSN
1932-6203
Abstract
Rapid and reliable methods for performing biological dosimetry are of paramount importance in the event of a large-scale nuclear event. Traditional dosimetry approaches lack the requisite rapid assessment capability, ease of use, portability and low cost, which are factors needed for triaging a large number of victims. Here we describe the results of experiments in which mice were acutely exposed to 60Co gamma rays at doses of 0 (control) to 10 Gy. Blood was obtained from irradiated mice 0.5, 1, 2, 3, 5, and 7 days after exposure. mRNA expression levels of 106 selected genes were obtained by reverse-transcription real time PCR. Stepwise regression of dose received against individual gene transcript expression levels provided optimal dosimetry at each time point. The results indicate that only 4–7 different gene transcripts are needed to explain ≥ 0.69 of the variance (R2), and that receiver-operator characteristics, a measure of sensitivity and specificity, of ≥ 0.93 for these statistical models were achieved at each time point. These models provide an excellent description of the relationship between the actual and predicted doses up to 6 Gy. At doses of 8 and 10 Gy there appears to be saturation of the radiation-response signals with a corresponding diminution of accuracy. These results suggest that similar analyses in humans may be advantageous for use in a field-portable device designed to assess exposures in mass casualty situations. [ABSTRACT FROM AUTHOR]