학술논문

Apolipoprotein-CIII O-Glycosylation Is Associated with Micro- and Macrovascular Complications of Type 2 Diabetes.
Document Type
Article
Source
International Journal of Molecular Sciences. May2024, Vol. 25 Issue 10, p5365. 16p.
Subject
*TYPE 2 diabetes
*DIABETES complications
*BLOOD plasma
*CARDIOVASCULAR diseases
*DIABETIC neuropathies
*SIALIC acids
*CAROTID intima-media thickness
Language
ISSN
1661-6596
Abstract
Apolipoprotein-CIII (apo-CIII) inhibits the clearance of triglycerides from circulation and is associated with an increased risk of diabetes complications. It exists in four main proteoforms: O-glycosylated variants containing either zero, one, or two sialic acids and a non-glycosylated variant. O-glycosylation may affect the metabolic functions of apo-CIII. We investigated the associations of apo-CIII glycosylation in blood plasma, measured by mass spectrometry of the intact protein, and genetic variants with micro- and macrovascular complications (retinopathy, nephropathy, neuropathy, cardiovascular disease) of type 2 diabetes in a DiaGene study (n = 1571) and the Hoorn DCS cohort (n = 5409). Mono-sialylated apolipoprotein-CIII (apo-CIII1) was associated with a reduced risk of retinopathy (β = −7.215, 95% CI −11.137 to −3.294) whereas disialylated apolipoprotein-CIII (apo-CIII2) was associated with an increased risk (β = 5.309, 95% CI 2.279 to 8.339). A variant of the GALNT2-gene (rs4846913), previously linked to lower apo-CIII0a, was associated with a decreased prevalence of retinopathy (OR = 0.739, 95% CI 0.575 to 0.951). Higher apo-CIII1 levels were associated with neuropathy (β = 7.706, 95% CI 2.317 to 13.095) and lower apo-CIII0a with macrovascular complications (β = −9.195, 95% CI −15.847 to −2.543). In conclusion, apo-CIII glycosylation was associated with the prevalence of micro- and macrovascular complications of diabetes. Moreover, a variant in the GALNT2-gene was associated with apo-CIII glycosylation and retinopathy, suggesting a causal effect. The findings facilitate a molecular understanding of the pathophysiology of diabetes complications and warrant consideration of apo-CIII glycosylation as a potential target in the prevention of diabetes complications. [ABSTRACT FROM AUTHOR]